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The Dynamic Analysis of Expty and Partielly Full Cylindricel Tanks "
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List of Bymbols (1)

uiz, 8, tg, v(z, 6, t)

u(z, 6), v(z, 8), w(z, 6)

-

D b 0 O R R Y N L P R At e e T

Cylindrical coordinates, See Fig. (I-1)

Longitudinal, tangential and radial come-
ponents of the shell displacement. §v is
measured positive inward), Bee Fig. (I-1)

Space dependent parts of u, v, and v in &
principal mode.

Radius of shell

Fourier Series coefficient - Bee Eq. (VII-18)e
(viz-21

Generalized coordinate - sloshing modes of
fluid £111ling in shell.

Cross sectional area of wind girder.
Normalization Coefficient

Expansion coefficient for velocity potential ¢2
Coefficient - Bee Eq. (IV-52)-(I¥-53).

Constants - Bee Fg. (I-1)-(I-3).

Modulus of Elasticity

Integral, See Eq. (VII-15).
Coefficient - Bee Eq. (IV-95).
Shell Thickness

Integral, Bee Eq. (VII-32)
Moment of Inertia of wind girder.

Bessel Function of first kind of order n.

Coefficient.
(an
Mass ratio, K = «——— =
a m m,

(1) Additional symbols in the text sre defined as they occur.
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P
p(6, x, t)
P(r, 6, t)

AT et T AR AT TN A A e T e ar e v e = . .
NN T A T N T T AT T T S I I N U e ST N N e e e e T T e T TN e DN SR N TN
Drge 2. Ja. X F. g,

Da

Height of shell .
Height of wind girder sbove bottom of tank.
Frequency number, See Eq. (I-22).

Generalized mass of shell in mode n = 0,
See Eq. (IV-79).

Total mess of empty tank = Eualm& .
Frequency numbers - See Section (III).
Mass per unit of srea of the empty shell.

Virtual mags per unit area of the fluid in the nth
mode, Bee Eg. (IV-55).

Rumber of circumferential waves of a moda of
vibration.

Pressure in fluid.
Radial blest pressure on shell.

Vertical blast pressure on fluid surface
or on roof of shell

Radial blast pressure, in subarea "ih". See Bectioca

(ViX-a)
Vertical bleast pressure on subarea 8 .

kp
Generalized coordinate of shell displacements.
Ceneralized forces in the nﬁh mode.
Bector of shell, Bee Section (VII-a).

Bubarea over which vertical blast forces on
the fluid surface of the shell are msasured.

Time
Kinetic energy
8ee Eq. (V~39)

Xinetic energy of fluid
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u vV, W, X, ¥ Coefficients defining the shapes of modes
of free vibration of the shell.
AR A Potential Energy of Shell.
Vi Vgr V, Fluid velocities in the r, € and z directions.
@ 4 Root of transcendental Eq. (IV-23).
Byt » Boy Coefficient - See Eq. (IV-62) and (IV-93). j
B " Coefficient - Bee Eq. (V-112)
5, Conversion Coefficient - See Eq. (V-42)-(V-4S).
V4 Fraction denoting the helght of the fluid 4
filling in the shell. Height of fluld = 7L. ;
€, Coefficient - See Egq. (IV-58). T

/)n ' Yt Displacement of Fluiéd Surface.

\Y, Poisson's Ratio.

g = L/a Retio of height of tank to radius of tank. ;
p Mass density of fluid.

N Mass density of empty shell.

T9g ? 9yy 2 Tpg Shell Stresses. ;

o(r, 6, z, t) Velocity potential function of fluid :
‘*nk See Eq. (VII"33)0
w, ahJ Frequency of vibration of empty or partially

full shell.

Note: r, 6, or z used as a subscript for the shell displacements u, v,
v, denotes differentiation with respect to the particular veriable used.

Dots indicate differentiation with respect to time.
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I. Modes ond Freauencics of Fcce Vibrations of Lrmty Cylindricul Tuirs.

Consider the empty fuel tonk of Wig. (I-1) consisting of a thin
cylindrical shell of heipght L end redius's, free at the top and simply
supported at the base. The positive directions of the displacement
components u, v and v are shown in the figure.

An snalysis of the frequencles and wodes of such e structure has
been made in Reference (I)l on the assunption that the shell acts as a
membrane with no bending stiffness. In addition; a procedure for obtainp~
ing the frequencies of the shell including bending effects is presented

in this reference. The condition of simple support at the base of the

shell requires in general that the displacements u(z,9,%t), v(z,0,t) and w(z,6,

t) and the moment MZ be zero at z = 0. If the shell is considered to be ‘j
a meﬁbrane with no bending stiffness, only the conditions that u(z, 6, t) ?
and v(z, 0, t) are zero at z = O can be enforced.2 Ei
The transcendental equations for the frequencies of vibration and ‘;

the expressions for the mode shapes corresponding to these frequencies, E%
according to Reference (1), are extremely complicated and are very diffi- i;
cult to apply to forced vibration problems involving the response of the :;
2

(1) "Dynomic Response of Cylindrical Tanks" by F. L. DiMagglo, Armed Forces ;j
Special Weepons Project, Contract DA-2y-00h-XZ-5h, AFSWP No. 1075, May, 1958. ;{
4

(2) Any combinotion of two displeccments set equal to zero could suffice .
to solve the boundary value problem for the membrane shell. However, as 5{
shown in Reference (1), the particulaer combinaticn used gives rise to very tﬁ
small displacements w(z, 6, t) at the base of the shell. The correction _;
to the displacement curve fur w(z, 6, t) when bending stiffness is included 53
in the analysis end the condition w(z, 8, t) = 0 at z = 0 is enforced is 5%
shown to be very small under these conditions. =

.’ - - - - - - - - = - -
T A e K o a4 T T NP T ST L 4 P T T T T Tt T e T T TR TR T T T e T T T e T T et v
A 'Y oA ™ - - - T paty . o .
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; o shell to transient blast loadings. In the present section of this report,
using these frequencies and shapes as & guide, approximate values for the 3
frequencies and modee of free vibrations of thin cylindrical shells of

o constant thickness are obtained. These approximate modes are of &

- relatively simple form and cen easily be used in SectionVII of this Report
in which an analysis of the forced vibration of empty and partially full
"..-' tanks is presented. Since the spplication of these results to both stesl
e shells and steel shells with concrete shielding is contemplated, both i
membrane and bending effects will be considered in the following analysis.
i The modes of free vibrations of the shell mey be characteriged by

an integral number ny the number of circumferential waves in the mode.
For each configuration o, there exists an infinite number of frequen- a
cies and corresponding mode shapes. In general, for n ¥ 0, we will only
S require the lowest one of these frequencies and mode shapes. For the
case n » 0, special conditions prevail, and this case will be discussed
> in Part ( € ) of this section.

The displecements u, v, w of the shell in free vibrations can be

) expended into a power series in the coordinate m(Qa)
& B 2 3 7 1
lwt 3
u(s, 8, t) = {Cc 2 + ¢ X + ¢ E +... cosné e ;
x Lul a u, .2 ug a3 (1-1)
—3 v(z, 9, t) = : 2, ¢ f— + C 4 ] 1nne o1¥%
» 7y v, & v, 5 v. 3 + vee pinnd e (1-2)
: — 2 3a )
"\ b 4 22 1(1)1';
< w(z, 6, t) = [ C  + Cp g + O, =5 + oo | cosnfe (1-3)
L_. o 1l 2a

v
>

(2s) Prom the reference of Footnote (l)of this section, it is evident that

i the g dependent terms of the mode shapes are well behaved functions which

]

can be expanded into power series about the point z = O.
3

"]
: . e n e e e . . s A a T ren"a® ot avim ., . e Nt e e e NN =
AR A A A L0 £ U R S M AT el T T T A R AR MR R RS TR IR ~\’\*)\‘-\;;,~A."u

______________ N LN . L% a3 % LRk Ly Ny xR ! ‘S § T vl 4n S ————y—— ———t" g . S s
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vhere the constant terms Cu and Cv are tekea equal to zero due to the
©° o}
voundary conditions at the base of the shell. In the membrane analysis

as presented in Reference (1), the radial displacement cannot be zero

at £ = 0 and the constant term Cw must be included in the series for
w(z, 6, t). The choice of the nquer of terms in each series which must ;
be reteined in an epproximate esnalysis is governed by the simpiest combina~ .
tion of terms required to obtain good approximations to the freqhencies, E

membrane straine and membrane stresses of Reference (1). It should be

noted that the exact membrane displacements do not differ very mucn from =3

straight lines and hence, relatively few terms need be retained in
Bq. {I-1) -« Bq. (I-3). A detailed discussion of the sbove considerations
appears in Section II of this Report. '

Two seta of approximate displacements are considered in this section;

1) & set in which f£ive constants are retained in Rq. (I-1) to (X~3) end

2) a set in which three constants are retained. While the latter will

‘g'.

glve satisfactory estimates of frequencies for most applications, the tj

i former are required to give accurate values of strains and stresses for i
¥ 1%
-’._' L
N use in forced vibration problems. -
P':_'> \‘r'

5" ' '\‘
E“- :'-:
a
N ks
v_'.: "4
o Tﬁ
to. v
3 -
s ;
9 "
g vd
i g
) '
Ny v
=3
3 =
b E
» <)

i
3'_‘- ra
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h. .. ‘\I J
fa* -
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4 ‘.:: -7-
. (a) Approximation Using Five Constants. - Menbrane and Bending Effects

nf0

Let the displacements of the shell (Fig. 1-1) be given by (2v)

l,_l,

-
1

B
s

|“‘, 2

: o u(z, 6, t) = u(z, 0)e™™® « Eg + X(Z5 - 3-"-;7_, cosnge (1-4)

. a T i
" i
= v(z, 6, t) = v(z, G)eiwt =V -;- sin noel® (1-5) ‘

: . w(z, 6, t) = w(z, e)eiwt = [ W( - -L-az)] cosnee{wt (1-6) |

where n = 1, 2, «+s. i8 an integral number indicating the number of q

circunferential waves in the mode, ® is the frequency of free vibrations
- end U, V, W, X and Y are the five constents.
' ,: The Rayleigh~Ritz methocgatji)ll be used to determine the frequencies
end mode shapes of the free vibrations of the shell. To use this method,
= the kinetic and potential energies of the shell must be determined in
terms of the parameters U, V, W, X and Y. The kinetic energy of the shell

is given by the relation

el :
T - -g.lff (42 + ¥ + ) advaz (1-7)
o ©

where my is the mass per unit area of the shell

m, = pih (1-8)

and dots indicate differentiation with respect to time.

: "y (2b) The expressions in the brackets in Eq. (I-4) and (I-6) for u and

w ere of the form (az + bze) and (¢ + dz) respectively. The particular

P Y

¢

” . m R . vy e My Te e e .
BN e 0N . a7 N « e .

m{- ‘. ‘- ‘n . ‘-'-t'. L "-‘-':". '.- (Y ‘.A!._ Pttt el

sty
R P R L TR T, D SO gy S, Tt




(2

N
‘b
S
)
iy}
X
i

f

N

-8-

(2b. Cont.). . .combinations of coefficients used in these equations
wera chosen so that the kinetlc energy of the empty shell, Eq. (I-9),
would contein only the squares of the coefficients U, V, W, X and Y.
This leads to a considerable simplification in the frequency determin-
ant, Eq. (I-23), by making the YW and WY coefficients 2qual to zero and
insuring that all terms containing the frequency number M lie only on

the main diegonal.

(2¢) The Rayleigh-Kitz Methcd is based on the condition that the varia-

tion of the difference
L = T-V

venishes for arbitrary variations of the deflection curve consistent
with the boundary ccnditions, i.e. the geometricel restraints, of the
problem. By chosing the displacements to be functions containing the
arbitrary coefficlents U, V, W, X and Y, the quantities T and V can be
expressed in terms of these coefficlents, S8ee Eq. (I-9)-(I-14) and the
function T-V may be formed. This quantity is now a function of the
variables U, V, W, X, and Y. The condition that the variation of T-V

vanishes for arbitrary variation in U, V, W, X and Y requires that

i

where C, takes on successively the values U, V, W, X and Y. Tkis leads

i
to a system of five simultaneous homogeneous equations on U, V, W, X and

Y; for non zero solutions of this system of equations, the determinant

of the coefficients must be set equal to zero thus leading to the frequency
determinants which appear later in the paper. 8ee, for example, "Vibration
Problems in Engineering" by S. Timoshenko, D. VanNostrand and Co., Third Edition,
Jan. 1955, Pg. 381 ff. In this reference the method is called just the Ritz
method. Also "Mathematicel Methods in Engincering' by T.Von Karman and

M. Biot, McGraw Hill, 1940, Pg. 352 ff.
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Substituting Fa. (I-4) to (I-6) into Eq. (I-T), the kinetic energy becor:s

“
m, 72 2 3

3 [ 2 2
L UE %] 3a” 2 3L ,{2
T:..._B_._ .;2.. +V2+_.E+.I_:2._Y .,.._._.;E‘ (1..9)

The potential energy V stored in the shell can be expressed es a

function of the displaccments u(z, 6), v(z, 6) and w(z, 6)

V= Vl + V2 (1-10)

where the first term Vl is the menbrane strain energy3:
5 an L
o v, = —EB __ 2 ‘[I Eaui + (Ve - w)2 + EaVuz(ve - W)
e 2(1-)°)

+ Ll_;_]?l (ue + avz)ajJ dzdo

(1-11)

while the second term V2 represents the strain emergy of bending and

coupling terms between the membrane and bending strains:

(3) "Tables for the Frequencies and Modes of Free Vibration of Infinitely ]

Long Thin Cylindrical Shells" by M. L. Beron and H. H. Bleich, Journal of

Applied Mechanies, Vol. 21, No. 2, June 1954, Tramsactions of the Americen

Society of Mechanical Engilneers.
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’ 3 ‘?n L 4y y

3N ) 4 h 2 2 1- 2

X V., & e e j[ aw +(V +V) +("“‘"‘)(a" '“)
2 ah(l-)/i’) 8.3 o [' 4 606 2 11 8

+ 31__1;-)) aa(vz + vze)a + 2“2’}":2("99 + va)
(k)
3
+ 28 uzwz;ldzde (1-12)

The subscripte indicate partial differentiation with respect to = or 6.

[~ Bubstituting the expressione for u, v and v into Rg. (I-1l)and Eq. (I-12),

- the potential energy of the shell is given by:

r! v 1+S___%_J_1-Vn22:l+v2 ﬁ}-%ﬁ+ 9;‘3]4» Hzg

G Ehx -
t:"- V. ot e ‘ —

- 1 e 2.4

" 2(1-y 19,2 (1-y -1 I i
o, ) +x2 L g + ‘—.]%8—.!_] + Y2 + UV Eﬂa.—.) ng ,.:!

- +ux & -uyav-w—gf- - Ving :

o n 2
2 +VX L‘%};m nt{] -l o (1-13) .

wo»
S )
et

’ (4) It is proper to call attention to the fact that the expression for -:}
:‘ the strain energy VQ used may not be rigorously correct in the light of j
: recent advanced shell theories’. However, the authors are satisfied that :::2’
; the effect of any corrected strain-energy expression in the range of appli- ‘-‘
E:..* cation of these results is insignificant.
: (5) "The New Approach to Bhell Theory", By X. H.. Kennard, Journal of :::E
f Applied Mechanics, Vol. 75, 1953. Transactions of the American Society :Sg
;.: of Mechanical Engineers , pp 33-L0. ‘J‘
= s
i .
b j

S @




I |

'l ""

N

-l]-

end

e

2,2, 3
, W2 M-l-%.i__ + 2(1-11)112;] + 1P [(Lna)?é]

e

V. = Ehx h-
2 2 2 = = -
2k(1-y°) a 2
02 _(}_%Y_)n gﬁ VP Lulév ]
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RY) Ry,
e L S - w!:('l“a')‘)naa
[, 2.3

wix | QAR gy 3(1—Y)ng" (I-14)

vhere § = L/a.
The Rayleigh~Ritz method for the determination of the frequencies ®

and the ratio of the shapes requires that

d
351 (T - v, - V2) = 0 (1-15)
vhere C, successively takes the values U, V, W, X and Y. Eq. (I-15) leads

to the following set of five homogeneous linear equations in the five

unknowng U, V, W, X and Y:
[EM N _g . (l-V)n2 - k(l-V)nﬂ U+ E%%&H] vV + E}%?’)n W+

+ -;-g] X {.‘;12— Yao (I-16)

Eﬂgﬂ U+ 2M-1§l;—)-’1-2n2- -9—%—"11]\/ +[§c,’-+k—9ﬁ%’—’-’l]w
3 : :

+ Eg (1+13vzl X +|:3-‘§] Y=0 (1-17)
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l}ﬁ%] U o [.g(l_tlwﬂ v+ E/- x(lg’i)naj ¥

+E§g%-%-l§l%&§f.k2&%ﬁ§}x+[%¥]y-o (1-19) .‘::*

&V 30 ;ﬂ 6y 4. (-a)a:] (1-20) 4
U v O} W X M-1-kil Y=0 I-20 ,
AR AR B I P

where
2
k - 2 (1-21) <
12a 5
and =
n,a°a’(1-§%) 3
i (1-22)

Nonvanishing solutions of Eq. (I-17)-(1-20) and free vibrations exist only
if the determinant of the system vanishes. This leads to the determinantal
frequency equation, shown on Page 13. =

For given values of § and n, Eq. (I-23) ylelds five positive roots

)(J , defining five mutually orthogonal modes, of frequencies

M,.Xh A

j = T J=1,2,3 b5 (12 4
a -
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The shape of the mode pertaining to a particular frequency w, cen be

J
% , %, % and % from any four of the Eq.

(1-16)-(1-20). 1In general, the lowest frequency w, only, will be required

found by computing the ratios

and for simplicity in the following expressions the subscript J for each

of the constants U, V X, and Y, will be dropped.

1
b M M J
Once the frequency w and the ratios of the constants have been ev-
dluated for a particular value of n, the displacements of the shell may be

written in the form:

2

u(z0) = ¢ |§2 +% (5 -3) | coons (1-25)
a 4o

v(z, 6) = ¢ [% 21 simd (1-26)

w(z, 6) = Cn[% + (é - -é—i')] cosnd (1-27)

It is convenient to define "normalized modes of vibration" by chosing the

constant Cn so that
L 2n
2 2 2
m, J[‘Jf (v + v° + ¥ )adbdz = enelm, = M, (1-28)
ovo

In this case, the modes are normelized to the total mess of the empty
¢hell, M. Bubstituting Eq. (1-25)-(I-27) into Eq. (I-23), the normaliza-

tion coefficient C_ becomes
n
1/2

6
%\ U2 V2 1 : Y\2 2,%\2 (1-29)
Y R R
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Uning Eq. (I-29), Eq. (I-25)-(I-27) give the normalized modes of free
vibration of the empty tank.

It is of interest to evaluate the normalized strains and the correc~
ponding normalized stresses in each mode. The strains for the plane
stress solution of the boundary value problem for the free vibratious

of thin cylindrical shells are given by

L v 2 ¢
%gg = Vg~ ¥ = C [5-5 + (nw- - 1)-‘ - ;-Z' cosn@ (1=30)
U 2z Ly X
ae = 8U, = (2n lw + (—: - %; ) 7 cosnd (1-31)

The normalized stresses may then be obtained from the relations

Ggg ™ :(—];%é'). Ecee + \)acg (1-33)
Oge ™ :Ef—?)- {;“ +y aee;] (x-34)

0 = ‘(13) Eezﬂ (1-35)
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b) Approximastion Using Five Constants - Membrane Effects Only
ngo0 ;

Yor the case of thin shells in which the ratio of the thickness to

the radius, %, is very small, the strain energy of bending Vé becomes

extremely small with respect to the membrane strain energy Vl, for modes
with a low circumferential wave number "n“(é). In such cases, excellent
approximations of frequencies, strains and stresses can be obtained if
the shell 18 considered to act as a membrane with no bending stiffness
and V2 is set equal to zero. The range of h/a and n for which the membrane
assumption is permissible is discussed in detail in Section III of this
report for several cases of lnterest.

The frequency equation and the mode shapes for the membrane shell are

obtained by setting the value of the constant k equal to zero im Eq. (1-16)-

(I-QO), The system of homogeneous equations then becomes:

- - o
6 n(3v- 6
[21»{ - F - (l-V)niJ U 4+ El-gl——l‘)] v o+ [O_J W o+ l;_.é-%]x +|~;%’J Y=0

(1-36)
[23—‘3&%1—1] U [m-ﬁgﬁueﬂv +[§]w " Eg (1+13\ﬂ x+lz3~{lx.o
(1-37)

o:}u+[§:|v +E§4-%W+ %x»f[o] Y=0 (1-38)

- - . -
. -g-:]u +E§(1+13y]v +[1iw +E;gg2m-l§- ﬂ%—ﬁ]x{%ﬂyno

B (1-39)

B ekl

(6) It should be noted that for higher modes with very large valucs of n,
the effect of the bending strain energy Vé becomes prevalent and the frequency

in the higher modes is controlled by the inextensional effects.

1

- . . - s m e = e = - - - Rt E T T e vt MM TNty N T E” YT KT oe tm Y
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Eg]u +[3-‘!3]v +|:o:lw +E§%’]x1~|}2{u-1}]¥-o (1-40)

The determinantal frequency equation is obtained by setting the determine
ant of the above system equal to gzero, or by setting k = O in Rqg. (I-23).
This determinant is shown on Page 18.

For given values of § and n, Eq. (I-4l) yields the five positive
roots MJ. The shepe of the mode pertaining to a particular MJ can be found
by computing the ratios g , %, é and é from any four of the Equations (I-36)-
to (I-40). The frequency can be computed from Eq. (I-24). In general,
only the lowest frequency oy will be required.

Once the frequency  and the ratios of the constante have been ev-
aluated for a particular value of n, Eq. (I-25)-Eq. (I-35) may be used
to compute the normalized mode shapes, normaliszed strains and normalized

stresses in the shell.
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¢) Approximation Using Three Constants - Membrane and Bending Effects.

n¥$0

Let the displacements of the shell (Fig. I-1) be given by

u(z, 6, t) = u(z, G)eiat‘ = U-:-' cos n8 % (1-k2)

v(z, 6, t) = v(z, G)em*' = V-Z- 6in no e2¢% (1-43)

it

v(z, 8, t) = vw(z, e)eiat. n W-z- cos nf e (T-L4)

Substituting Eq. (I-42)-(I-kl4) into Eq. (I-7), the kinetic energy of
the shell is given by

2 f‘
3
T-ﬁ::-»—-i‘-é]:uz-o-vz+wa (1-L5) .

The potential energy of the shell is again given by Eq. (I-10)-(I-12),

vhich upon substitution of Eq. (I-U42)-(I-U44) become:

v + (av-W)© %3 + YU(aV-W)E
Ehn
Vi=35y b . (1-16)
+%:V—)-(V2+§§L Ua-ngUV)

and

oatidala,

jhb]

5 1
we [-(——-ﬂl'% «-Q + 2(l~)))n2;] 3

, - ;
+l’;.3:%2) E_%E:‘UQ + P%—"—m QJ v ;
- (lgz negé:] 4,4 [;' 3(1-V)§%:l W (I-47)

mlb‘

V, = =
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2 - 22~ P
: 3
ti; Using Eq. (I-15), the following system of three homogenecua equations i
E] in the three unknowns U, V and W 18 obtained: ;.,
2 Sl
¥ Eu -2 na(l-V)(lﬂ{)] U o+ !-;ﬁ?-g——”’l] v {%{w -139—%}2’13 Va0 (I-48) N
t i
E:g
-’-3-‘3-(%'21 U +[2M-2n2 - -3 (1-»')(1+3ki_J v o+ En + Ek—%kﬂjw =0  (1-49) {4
- t %
i1
P 2 2 -
%{V», E‘L-élﬂ}]u N ’;nssz‘i‘l,f‘,lﬂ]v +Eu-2-%{(1-n2)2§-+2(1-9)nﬂ 7
Z L - t t : gt
g o =
N 3
& (1-50) ~
vhere k and M are defined by Bq. (I-21) and (I-22) respectively. KFonvanisi- :
5 -
ﬁ ing solutions of the system of Eq. (I-48)-(1-50) and free vibrations exist -
~  only if the determinant of the system vanishes. This leads to the deter~ 2
minantal frequency equation shownon Pg. 21. ;
; For given valuss of § and n, Ba. (IV-51) ylelds thres positive roots ﬁ'
l(d, defining three mutually orthogonal modes of frequencies 5%
X o3
O)? s 42-——- J = 1, 2, 3! (I’”) 1 4
a,8%(13) 3
The shape of the mode pertaining to a particular frequency an can dbe m:
found by computing the ratios i and i from any two of Eq. (I-48)-(1-50). .
l.3 2
In general, the lowest froguency ® only, will be required &and for ""~'V
L
simplicity in the following sexpressions, the subscript J will be dropped. -;;; ]
i
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ﬁ: The displacements of the shell may be written in the form

u(z; 8) = C, %ﬁ- cosn@ (1-53) ;
& Vz
. v(z, 6) = C,yg olund (1-54)
v z -
g w(z, 6) = C,;  cosnf. (1-55)

-

It 18 convenient to define "normaligzed modes of vibration" by chosing

the constant C_ so that Eq. (1-28) is satisfied. 1In this case, the modes

'vw ]

are normalized to the total mass of the empty shell, Mi = 2nalm1. Sub~

-~ stituting Eq. (1-53)-(I-55) into Eq. (I-28), the normelization coefficient
;
Cn becomes ]
1 g
: ] (1-56)
£ U2 | (V2
1+ 92+ &2

Using this value of s Ea. (1-53)-(1-55) give the normalized modes

2
4
rolon

z
.

K, -

of free vibration of the empty tank.

The results obtained from this epproximation may be used where an esti-
nate of the frequency of vibration in any particular mode 1s required. The
vwork required in solving the third order determinantal frequency equation
is materially less than that required for the fifth order Geterminantal equa-
tion. However, the present approximation does not give sufficiently accurate
results for the strains and stresses in the shell, and the approximation

using five coastents must be employed when these quantitics are required.
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d) Approximation Using Three Constants - Mcmbrene Effects Only.

n f 0

As in part (b) of this section, a membrane spproximstion mey be used 0

to obtain the frequencies of sufficiently thin shells in the lower modes o
of n. The frequency equation end the mode shapes for the membrane shell

are obtained by setting the velue of the constant k equal to zero in =

Eq. (I-48)-(I-51). The determinantal frequency equation is given on Page 2h. )

i e
";7! 3

%

The remarks of part (c) of this section regerding the validity end
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epplicebility of three constent approximation also hold for this case.
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3
o e) Mode n=0
S It 1s shown in Reference (l)(7) that the exact solution of the bounca-

ary value problem for the free vibrations of a thin cylindrical shell in

the mode n = 0 yields en infinite number of frequency numbers MOJ lying &
between closely spaced limits. For a steel shell (Y = 0.3) with t = 0.8,

these limits are given by M = 0.8833 and 0.91. Since the frequencies and

‘ thelr corresponding sub-mod=s are so close together, a forced vibration
? :f analysis for the response of the shell in the mode n = 0 would require an
§£ expansion involving, in general, many of these sub-modes of frequency QBJ' ;
:j This 1s not practicable and in general, other methods must be employed to 1
- :f approximate the response of the shell in the zero mode. This problem is
g discussed in some detail in Section VI of this Report. One suitable
= method is to consider the shell as a serles of separate rings.
e ]
S
Lt

‘,_
.
’

(7) Reference (1), DiMaggio, Pg 12 and 13
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ITI Comparison of Results for Membrane Shells

The values of the frequency number Mn’ and the normalized strains 8€ggs BE
ag,q obtained from the five constent membrane approximation of Section I,
Part b, will be compered with the results of the membrane analysis of
Reference (1). An empty steel shell in which § = 0.8, »= 0.3 and 2'- 15%5
will be considered. For the modes 1 < n < 9, the shell acts as a
membrene, as shown in Fig. (III-1).

Table (II-1) gives the computed values of the lowest frequency
number, Mnl’ for the modes 1 < n 5_6 of the steel tank under consideration.
The results of both the five constant and the trree constant approximations
are given and these results are compared with the values of Mnl from the
membrane theory of Reference (1). In addition, the percentage error in
the frequency, CRY is given for the results of both approximations.

It is seen that the error in the frequency w , varies between 1.6%
end 6.3% for the five constant approximation, and between 4.3% and 19.1%
for the three constant approximation. It is concluded that both approxi-
mate theories give sufficiently accurate estimetes of the frequenclies of
vibration of the shell for use in problems concerning the response of the
shell to dynamic loading. It should be noted that the increased accuracy
of the five constant approximation is obtained at the cost of the extra
labor involved in expanding a fifth order determinant rather than one of
the third order.

For applications in which the values of the strains and stresses

of the shell in each mode n are required, the five constant theory must

be used. It should be noted that although the frequencies of vibration

z2?

b e
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and the shape of the modes, u(f6, z), v(6, z) and w(6, t) can be estimated
by means of vhe three constant theory, the strains and corresponding
stresses which involve derivatives of the displacements cannot dbe odb-
tained from this theory with sufficient accuracy for use in forced
vibration problems.

On the other hand, the five constant theory gives sufficiently
accurate values of the shell strains and stresses in the range of parti.
cular interest. For future applications, the longitudinal stress %
at the bottom of the shell will be of particular interest in analyzing
the uplifting of the shell under dynamic loading. Also of interest will
be the direct stress %0 at the top of the shell for possible use in
connection with both buckling considerations. The determination of these
stresses requires the values of the strainseee and S at the top and
bottom of the tank,

Fig. (II-1)-(11-4) show the variation of the strain ac__ vith the
height of the tank for the modes n = 1, 2, 4 and 6. The strains obtained
from both the five constant theory end the membrane analysis of Refersnce
(1) are shown. It 12 felt that the results of the five constant theory
are of sufficient accuracy for use in applicaticns to forced vibration
problems.

Fig. (II-5)-(II-8) show the variation of the strain aegyy with the height
of the tank for the modes n= 1, 2, 4, 6. Again, it is felt that the results
of the five constant theory are of sufficient sccuracy for use in applicae
tion to forced vidbration problems.

Fig. (11-9)~(II-12) give the values of the shear strain e g for the

modes n = 1, 2, 4 and 6. It is seen that the five constant approximation

AR VR
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:;’: glves a poor result for this strzin. However, as this strain is not of
- any practicel importance in our applications, this is no deterrent to the
) use of the five constant theory. A better value of a €.0 could be ob-

tained from & six or possibly seven constent theory, but this would lead

to higher order frequency determinants and would serve no useful purpose

v in future applications.
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Table II-1

Frequency Number, Mn

Empty Steel Tank L/a = 0.8

Y = 0.3
h L
a 1200
Five Constant Three Constant Reference (1) ;
Approximation Approximation
n
M Error in M Error in M
i (%) o (8) at
1 14575 3.9 1610 4.3 L2h2
2 1906 2.9 1974 L7 .1802
3 0859 1.5 .0934 5.8 083k
4 .0l32 1.6 .0lgh 8.8 .0418
5 .02k1 3. b 0290  13.3 0226
6 0147 6.3 .0184 19.1 .0130

P

“n1 - miaa(l-\lz)
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:: ::; IIT Bending Effects on the Freguencies and Modes of Free Vibrations

g of Thin Cylindrical Shells. ]
- ;
N This section presents a study of the effect of bending strains on the i

frequencies and modes of free vibrations of thin cylindricel shells. It

i l: ~)

should be noted that for shells which are sufficiently thin to be considered
membrane shells, the frequencies of free vibrations are independent of the
thickness to radius ratio, h/a, and depend only on the height to radius

o ratio, § = L/a. For & shell of a given materisl and ratio t lying in

this range, the membrane frequency would be the same regardless of the

_ = tickness of the shell. The problem therefore takes on two aspects for

l! ::’:: dscussion:

1. The establishment of ranges in which shells of practical interest

,, _: could be considered as membranes.

ll 2., The derivation of a simple procedure which would give an estimate )
) of the effect of bending strains on the lowest membrane frequency in any |
F ‘_ mode n. Buch a procedure would provide a simple method for establishing

ﬂ . the range of modes in which a given shell could be considered to be a mem- ]
- brane. It would also provide an estima.te of the effect of bending strains ‘
; _ on the lowest membrane frequency in any mode n, in the range in which bend- '
'! . ing effects are of importance. The advantage of obtaining such information i
- without the necessity of expanding the determinantial frequency equation, i
* : tq. (I-23), for each shell with a different h/a ratio is obvious. f
'! - It should be noted however, that if values of the strajus and stresses

g in the shell are also required, the determinantal equation, Eq. (I-23), ;
“ : must be expanded to obtain the lowest root Mnl’ and the corresponding mode
9

. -"1.0

- - . T AT T AT AT et N e S LV VTl e e T WL e, W e R At I IR A STC T TR IR S
e NN L N I I e o S S I S i e S S LA S SRR E SR LRTH LR
A PR ICL L NSNS, TR U Ve S AL S S . S N N S W SO S e ) AT S PSSP N .
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shepes must be computed from Eq. (I~16)-(I-20). The use of the mode

s hapes resulting from membrane theory does not give en accurate deter-
mination of the strains in the shell in the range in which bending
effects are of importance.

An spproximation for the determination of the frequencies and mode
shapes of thin cylindrical shells with small -g— ratios was given in
Bection I, parts (b) and (d), by considering the shell to be a membrane
with no bending stiffness. The results of such an approximation were
noted to be valid for modes with a low circumferential wave number n.

In order to establish a range of validity of % end n for this approxi-
mation (2) and to study the affects of bending strains on the frequencies
of the shell, computations were made and are presented for the following

two shells of practical interest:

&) Unprotected steel tank, %n 1—2%5’ %- 0.8, V= 0.3

1

b) Steel tank with concrete shielding, 2— - 57

’EQOQB,V.ch

Figure (III-1) shows & curve of the frequency number M (correspond-
ing to the lowest frequency J = 1 in each mode n) plotted against the mode
number n for the unprotected steel tank. The values of M OB the curve
labeled "membrane only" were derived from the membrane frequency equation,
Eq. (I-41), while those on the curve labeled "membrane plus bending" were
deriveq from the complete frequency equation, Eq. {'I-23). For a shell
of this relatively small thickness to radius ratio, both theories give the

(1) This range is quite different for steel tanks and for steel tanks

with concrete shielding.
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some frequencies in the range 1 < n < 9. Tor the modes in which
9<n< 14, the inextensional bending strains and the extensional membrene

strains have sbout equal effects on the frequency. For n > 1h, the

bending strains become predominont and control the frequencies of
vibration of the shell. i

It should be noted therefore, that if these modes are to be used in
the analysis of the forced vibrations of the empty steel tank to dynemic |
loading, the membrane theory can be used and bending effects may be
neglected. In such an analysis, practicel considerations of the convergence
of the mode series for the response of the shell to dynamic loadings, would
certainly not require more then the number of accurate modes givenlby the
membrane analysis.

The situation changes radically when the steel tank is protected by
a concrete shielding. Fig. (III-2) shows the curve of M versus n for
this case. As in Fig. (I1I-1), the "membrane only" and "membrane plus
bending" curves are computed from Eq. (I-41) and Eq. (I-23) respectively.
Since the thickness to radius ratio of the protected shell is roughly
f orty times larger than that for the unprotected shell, it is to be
expected that the bending effects will become of importance at a much
lower mode n than in the case of the unprotected shell. It is seen from
Fig. (III-2) that a membrane analysis gives accurate results in the
renge 1 < n < 3. Bending effects start to become of importance at n = 3
and for n > li, the bending strains besome predominant and control the
frequency of vibration of the shell. The forced vibration anelysis of

the response for a protected steel tank to dynamic loading would therefore

T e - —aman ot e ™ N R N m " A Tt ET ATt A tA e YT . e
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require that bending effects be included in all modes where n > 3.

A simple estimate of the effect of bending strains on the membrane
frequencies of a cylindrical shell will now be developed. This correction
to the membrane frequency will ensble the computation of the frequencies
of vibration of shells in the range where bending energy is of importance,
without resorting to an expansion of the fifth order determinantal fre-
quency equation, Eq. (I-23), for each shell with a different h/a ratio.
Moreover, for a shell with a particuler thickness to radius ratio h/a,
it will enable us to determine the range in which the shell may be con-
sidered to be a membrane.

To obtain this bending correction to the membrene frequencies of a
shell, consider the case of purely inextensional motions of & thin
cylindrical shell in free vibrations. The condition of inextension of
the middle surface of the thin)shell requires that the stirain 8€gg =

Ve - W be equal to zero. This condition is satisfied by displacements

of the form
w(z, 8, t) = £ cosnd e1r® (III-1)
v(z, 8, t) = % é sione e %1t (111-2)
u(z, 6, t) = —% coen8 e ¥t (111-3)
n

The frequency of these inextensional oscillations can be determined

by Rayleigh's Principle:

Tmax = Vmax (111-4)
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Bubstituting Eq. (I1I-1)~(III-3) into the strain energy expression for

»
V, as given by Eq. (I-12) the potentisl energy of the shell is given by

2

2.2 e
Ehx h n i len"y2 ¢,
Vemax = -————-——-zh(l.va) :5‘ {2(1-\}) + 3 } (...__..nn) ] (IIIO’)

while the maximum kinetic energy is cbtained by substitution of these
equations into Eq. (I-7):

2
2 . miﬂ: @ ' %_ (n +1) 1 ’ (111-6)
n

Bubstituting Eq. (III-5) and (II1-6) into Ea. (IXI-h) the frequency number

HnI is given by the relation

[ 2.2
2 2, 22 2(1-V) + 0y
M. w-B 2 (1-n7) S— (111-7)
nl 2 2 2,2
128 n +1 ng . 1
3 n2+l _J

vhere M ; is defined by Eq. (1-24), The corresponding frequency @,y becomes:

6(1-)}2
“1211 . = . 2t)? | 2 e (111-8)
2

126_(1-]}2)& n+l 1l +(;—2:i)—n§;§

Bq. (IIZI-7) and (III.8) give the frequencies of the purely inextensional
motions of thin cylindrical shells.

(2) The potential energy of extension, V, is identically equal to rero

for these motions.
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P
To obtain on estimate of the effect of bending strains on the low- Dy

est frequency factor M 1 1 1

shell only 1s computed from Eq. (I-k1l) or Eq. (I~5T7). Let the quantity

in any mode n, the value of Hn for the membreane

IT' ]

Y
'c« .

B
be called an' The value of the frequency factor M 1 for purely in- . ;'fa
extensional motions of the shell is computed from Eq. (III-7). Noting f:‘.':

that the factors M are proportional to the square of the frequency, an

appreximate value of the frequency factor Mn which includes both membrene

and hending effects 18 obtalned from the relation: 5"
Mo=M o+ M (111-9)
The corrected frequency v is then given by the relation ’“
vhere w  end o . are computed from Eq. (1-24) and Eq. (III-8) res- :".
pectively. The method used in obteining Eq. (III-10) is sometimes known ‘g
es Southwell's method. E
Tebles (III-1) and (III-2) show the application of Eq. (III-9) to
the cases of the protected and unprotected steel tanks respectively. 43
Column & of each table gives the value of M computed from Eq. (111-9) _1
vwhile column 5 gives the value obtained by expanding the fifth order i"
determinantal frequency equation, Eq. (I-23). It may be noted that very
good spproximations to the frequency factor %&1 can be obtained using :
Eq. (I1I-9). In addition, the range of applicebility of the membrane f:‘_'.é
theory can easily be established from such tables, thus verifying the Pz
results shown in Fig. (III-1) end Fig. (III-2). v
It should again be noted however, that when strains and stresses are Ef
required in a mode in which bending effects are important, the value of Nln ‘:
should be obtained by expanding Eq. (I-23) and the correct mode shapes should :‘
be evaluated using Eq. (I-16)-(I-20). ,
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Table III-1

Effect of Bending on Membrane Frequencies

Empty 8teel Tank - Concrete Shielding
Five Constant Approximation
L/‘ = 0.8’ B 1

a " 3
n "nm M 1 !ln “n
Xq. (1I1I-9) Bq. (I-23)

1 4575 4] U575 U575
2 .1906 .000% .1910 1911
3 .0859 .0075 0934 .0934
I .0lL32 .0233 .0665 .0659
5 0241 .0550 0791 0779
6 0147 112 1259 .12k0
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Table III-2

Effect of Bending on Membrane Frequencies

Erpty Steel Tank - No Shielding
Five Constant Approximation
L/a-O.B, _h_'l VY = 0.3
a 12007

0000k
.0001

+00060
00123
00298
.00934

- - w o w
- T

|

n
Iq. (111-9)

021116
.0LL8

00420
00345
00422
+00995

M
n
Eq. (X-23)

02412
0147

00420
00350
00421

.00990
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IV Frce Vibrations of Fluid Filled Shells-
Dctermination of the Virtual Mess of the Fluid

Methods leading to the determination of the frequencies and modes of
free vibration of empty cylindrical fuel tanks have been presented in pre-
vious sections of this report. In this section, the anelysis will be
extended to the case of partially full cylindrical fuel tenks. As in the
case of the empty tank, the modes of vibration will be characterized by
the parameter n, the number of circumferential waves in the mode.

Consider the shell of Figure(iv-l) which is filled to & height 7L
with an incompressible inviscid fluid of density p.. The assumption of
the incompressibility and zero viscosity of the fluid implies the existence

of a velocity potential function, ¢ (r,8, z, t), such that

(74

v2¢-939+ % éfﬁ»fﬁ-o (1v-1)

ar® 362 3z°

The motion of the fluid maey be derived from ¢, since the velocity of the

fluid in a direction 8 is given by the directional derivative

v -3 (1v-2)

The expressions for the radial, tangential and longitudinal velocities of

the fluid particles in polar coordinates are

v, = -8 (1v-3)
RIS gg (1Iv-1)
o -3 (2v-5)
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The pressure in the fluid at any point in epace is given by the deriva-

tive of @ with respect to time,

pe o g (1v-6)

where it has been assumed that the velocities are small.

The motion of the fluid during the free vibrations of the partially
filled shell can be obtained by the solution of the boundary value problem
involving Eq. (IV-l) and the following three boundary conditions:

a) The radial velocity v, of the fluid must be equal to the radial

velocity w of the shell on the surface r = &a.

a(’) 6, t) = =« §¢(r’ag’ z, t) (IV-7)
= 8

b) The longitudinal velocity v, &t the bottom of the shell, ¢ = - Zg ,

must be equal to zero.

vz - - w(r)é:) T, t) - 0 (IV"'B)
za- 2L
2
and
c) On the free surface at ¢ = + Zg » the pressure must be equal to
zero:
p = p a¢(r) a:) Z,j_) = 0 . (IV~9)
Zm ZE

Eq. (Iv-1), (IV-7), (Iv-8), (IV-9) enable the determination of the velocity

p- >ntial ¢ and subsequently of the kinetic energy of the fluid from the

relation:
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S (1)

' aap gg; -

F Trutd 5 jI g ~= as (1v-10)

33: :j~ vhere the integration is taken over all surfaces of the fluid and % is

A the normal derivative of § on the particular surface over vhich the
i integration is performed. The kinetic energy may also be obtained by a
8 volume integration of the square of the velocity,

N u‘: - e 2 . .

i Ty =5 (U “r + v‘g + vi) rdrdfds (Iv-ll-a)

e vol. '
o
SR
e

o which, upon substitution of Bq. {IV-3) - (IV-5), becomes

o a 2x 7L
o T, =2 (gti?)2 + (gﬂ)2 + -2 (%)2 rdrd6ds (IV-11-b)
e L £ 2 z r2

G |
S ;
A The determination of § will take place in three steps using the :
i;: B principle of superposition. Three separate potentials, ¢1, ¢2, and ¢3
F ) will be obtained such that
=
: ¢ - ¢l + ¢2 + ¢3 (IV-12)
O

L

AN will satisfy the boundary value problem.
:., i The various potential functions ¢k(r, 6, z, t) of Bq. (IV-12) can be
{
. expressed as a summation of their respective components in the n modes:

e
o bad
;".
& ¢k o Z?kn(r’ 6, z, t). (Iv-13)

e n=1
b

e ) Yor example, "!L;drodynamics" by H. Lamb, Dover Publications, Sixth Edition,
:!; ~ 932’ pp-%, Eq. (h » 3
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In the analysis that follows, the expressions for ¢kn will be
determined and the virtual mass m o in each mode will be evaluated.
Expressions tor} al’ the displacement of the fluid surface will

also be presented. It is convenient to consider the problem for the

s)

b) n«0and ¢) ny O - Five Constant Approximation.

following three ceses: n ¢ 0 - Three Constant Approximation,

- - - - - - - - - - - - e T
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(a) nf 0 - Three Constent Approximation

Consider the potential furction ¢1n

1 2 r® .
¢ln " - Bn[§ + -7-5‘] ;;E:I cos no qn(t) (Iva1h)

which satisifes the equation V2¢1n = 0. The component of velocity in

the radial direction is
1 % r\n-l o
A Bn):§ + 'ii] (-;) cos né qn(t) (1Iv-15) ‘

Equating the radial velocity of the shell to the radiel velocity of
the fluid at r = a, Eq. (IV-7) may be used to evaluate B . Defining the
generalized coordinate of the o® shell mode as qn(t), the shell displacee

ments are given by the relations

u = u(z, 6)q (t) (1v=16) (o)
v = v(z, O)qn(t) (v)
v = w(e, 8)qn(t) ()

vhere u(z, 8), v(z, 6) end w(z, 6) are defined by EBq. (I-53)=(I+55). The
value of v is obtained by differentiating Eq. (IV-16-c) and shifting the
exis of & coordinates to that of Fig. (IV-1):

o 2
ve-C Z-& [% + -7—%] cos nb an(t) ( )o (xv-17)

Substituting Eq. (IV-15) and (IV-17) into (IV-7), the value of B , 18

L
B ==-C, L& » and the velocity components due to ¢1n becomes

V" Cy Z-E [!2'- + -;E] (E)n-l cos nb c.ln(t) (Iv-18)

(2) The minus sign in Eq. (IV-17) is required to refer the shell velocity
to a "positive velocity in the positive r direction" convention used in
Eq. (Iv-2) and (IV-7).

cad it
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Vo ® G L [-% + ;-E (fl-)""l sin n0g_(t) (Iv-19) ]
k|
.
L et .
V'zl --Cn z; (m) cos neqn(t) (IV-QO)_ ':«2

The fluid potential ¢1n gives a longitudinal velocity component Vel
vhich i8 independent of z. 1In order to satisfy the boundary condition
of Eq. (Iv-8) a second function ¢2n must be added to ¢1n‘

The velocity potential ¢2n(r, 0, £, t) is chosen so that «,7?";2!221 =0

and that in conjunction with ¢1.n’ the boundary condition of Eq. (IV-8) is
satisfied, At the same time, the redial velocity V , is chosen so that o
|\1
¥,
vrg] - -0 (1v-21) 3
r=8 T=a 3

since v, already sstisfies the boundary condition of Eq. (1v=T),

The form of @, 1s taken as

Bon = ) Cy sioh (BL) 5 (L) con nfd_(4) (1v-22)
izl

vhere, in order to satisfy Eq, (IV-21), the @,y are the zeros of the deri-

vative ST the Bessel Function of order n, i,

Iy (eyy) =0 (1v-23)

The component of velocity in the longitudinal direction is
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The boundary condition of Eq. (IV-8) may now be written as

[\le + V;'sz] O (x- 25)

Bl
Zea 5

and upon substitution of Eq. (IV-20) and {IV-2k4), Eq. (IV-25) becomes

~Z Chittn; Cosh %)Jn@%;) ?F"%;J&Qhan-' (- 26)

a

The constant C ni €80 be evaluated ueing the orthogonality property
of Bessel Functions. Multiplying both sides of Eq. (IV-26) by the
a r
function Jn(—%') vhera %y is any one of the a , roots of Ji (a'ni) = 0,
and integrating with respect to r, one obtains

a

& o
,.2;.-, Cni“n,é cosh Odgaf lL)//aJ;Lé%_L[ L(.ig[-{)fd/’ -

a :

[& %é]( nna”".)/” " (5%"’:/) ar  (mr-27) |

Jo - ‘

The orthogonality relation for the Bessel mnctions(S) is

(3) 8ee, for example, McLachlan, N.¥., "Bessel Functions for neers”
Oxforéd University Press, 1934, f’g. 16(’), Eq. (47) ana (48). Fgineers”,




a ‘ J' - 0 Lo J
Kl (" [ ) =
PR 2t e ey
i 2\ | U S ze)
k Also used will be the relation
o = - N O(nc') o
3 o 2 2 (fr-29)
o vhich is valid for J;‘(o,ni) = 0,
Using Eq. (IV-28) and (IV-29), the constant C o is evaluated from
S: Eq. IV"27): »
i 3
.._-:. rlL 2 E
e YL ox,; cOSh (__2%__).7;,@,,&- )(o(m-n ) .
1T ,‘:ﬁ
3 t
The velocity components due to the function ¢2 becone: ;
= S G, (B0
= - Sih ( 2 / ( ne /ot ' 5 4 j
rz —-a ne cos n t ;
in} 7 n a -5 c 'dqn()(m«_g/) E
< .
Voo= Y Che Sinh °‘___...."‘-27 (0(__514..' r ).ﬂ. SN N6 Gn(t
ba= 5 o SInh (2] T, () 2.1 70 Gt . o -A
3
R
and i
o

Vo vhich is glven by Eq. (IV-2L).
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The potential function obtained by adding ¢1n + @, satisfies (Eq. IV-l)
and represents a motion in which the boundary conditions of Eq. (IV-7) and
Eqg. {IV-8) are satisfied. Moreover, this motion maintains a plane surface
at the top of the fluid, z = Z%, on which the particles have zero velocity.

To satisfy the condition of zero pressure on the free surface, a third
fluid potential ¢3n(r,0 s Z, t) 18 introduced. This function represents
the sloshing motions of the fluid on & pertially filled tank under the
conditions of zero velocity at the tank bottom and zero radial velocity
at the surface of the tank r = a. Thus, it represents a motion in which
the tenk remains rigid while the fluid inside it moves. The velocity

potential ¢3n(r,e, z, t) is chosen as

= —-ZAnc acos nefn(“”‘f}cosh@a—(f* “‘j
=l i Jp (ni) Sinh (O(nl.b’l_) (1z-33)

- K ¥, r= T
T S T
T L !l'f'

vhere the values of ani are egain the gzeros of the derivative of the :

Bessel Function of order n as given by Eq. (IV-23). The coordinates

TN

A Ahi(t) could be considered as the generalized coordinates of the sioshing

?_ modes of the fluid which are to be superimposed on the motions due to

. the tenk displacements given by the potential functions §y + @, . The

% ' velocity components due to the function ¢3n are j
- Vg = E?An,_ cos né (“”‘—r)co.sh[—-ﬂ-‘(z+ “‘]

("4/;4 ) 5/n/7(°’n(. JL) @34)

YR ~a -8 T, 3
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.




Vg3 = — '\{’A‘m" nNa s 178 (7;7(5’%7-5—")605/7[6“35”(5 *%j

o=l " Xni J,—,, (dnzj s/nh (&na _e_fa,l:) CT_IZ'——.BS)
and
Vs ,iAnd cos ne«f—;(f‘-g-‘-f)smhf‘-af’-é(i* %]

= Jn (eie) Sinh Eni. k) (- 36)

3—Jrua 3-:]:° .%é.()'

The coordinates A ni(1:) are as yet undetermined but may be expressed in

Eq. (IV-34) and (IV-36) shov that v, = 0 gnd that \A
terms of the qn(t) , the generalized coordinates of the shell motion. This
15 done by utilization of the condition that the fluid surface at P 1%
must be a free surface with rero pressure.

To find this relation, consider the general fluid motion governed
by the potential function @ of Eq. (IV-13) so that the velocity of the

fluid in any direction s is given by
Vp = Vg * Vyp + Vs (1v-37)

The kinetic energy of the fluid msy be determined from Eq. (IV-10},
vhich upon substitution of the appropriate values of ¢n and its space

derivatives on the surfaces r = a and 5 = + Z..g becomass




zagt

/7””’ ‘- / /_¢/n *Papy e ¢m//, a (a ¢”7) o

+—’§"/ ‘/[?ﬁ/n +¢z»7 +$7$3,\/g*%é(i:}§‘;§f2 zz:/".a/r"/(; @*38) ,
o /o Z

hat o ¥ 0 on th

It roy be noted tﬂ”qt ﬁlﬂ + ¢;.’D. ' l{{ = O and that, o = 6;3. - on (-]
BUXiace ¥ = 8,

Bubstituting the values of ¢n snd its epace derivatives into Eq. (IVe 1

38), and performing the required intecrations, the kinetic energy of the

fluld on the nth mode becomes:

XL
//a/c/ 6/7 z L ("‘ e ”z) /

/ -
_ ZZ,ZE_Q.B/Z‘H %] 2—#{2 ”—/un/l;("(”‘%f-‘xdm- 5'1:_) + $In/)(dml JE’I_.Xo(m. %)
rx-Y]

_ tanh (¢ 2¢) (t)A,u(f)-F/’ 2_;/ n; j(a(ncié) Anzc(f)(m-—.aa)

e 2L

Eq. (IV-39) cen be written as

Tnsng = Dgi+2 Dy #4 Daifihn +2, Dai A (@-40)
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vhere

D - -,2@—"-"--5‘ ”z‘/ (ar-+1)

2z tank (2aL2%
b D{ o(a ?Z[L"o(:;:fn z) (_%)] @-42)

Dz‘:z - Z%@:an_%]&.’é:_ { 7’&4/:(""4" X"(M‘Z!- ) .S/M(dmg_ffm{}) -

7"406 ndl
and ’“”'—% (= 43)
- fﬂ' _6_?,3 dnzc -73) ‘
Dsi 4 o Tty (T L) @' 44;)

th

Iat the kinetic energy of the shell in the n™ mode be given as

N

1
Tnehe1 = 3 M9y (1v-45)
and the potential enérg,y of the shell be
1z 2
Voshe11 ® 7 Koy (1¥-L6)

The equations of motion governing the generalized coordinates qn(t) and
Ani(t) may be obteined oy the use of Lagranges equations:

'd% (%T?ik) + %{; -Q (xv-47)
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where T 1ia the total kinetic energy of the system in the kth mode and is
given by the sum of Eq. (IV-40) and (IV-45); V 48 the potential energy of
the system and 18 glven by Eq. (IV-46); and Q is the genaralized force in
the mode k due to any external loading and to body forcaes such as the
force of gravity.

Noting that the pressurs on the fluid surface £ = iL is zero and

2
neglecting the effect of the gravity forcea('u) , the generalized force

e

Qk is zero for free vibrations and the Lagrenge equations on the

generalized coordinates 9, and A - becoms:

(ZD‘*Mn)?‘;? '*’(2;,[)1&)2.” + ;Dzé/i',,& 1"/2,5,;"0 (- 45)

Diay G 4 2D Ay = o, s ) / )
LJ24‘2'/7+403¢/-7/7‘--U (t= &35 =2 (.ZY--#:’)/

vhere Xq. (IV-49) holds for each value of i,

(8) If gravity is included in the anslysis, there is a contribution to
the generalized force tern, Qk’ vhich containg terms Ani' The analysis
of this complete system gives rise to two sets of modes, one of which is

vexry close to the tank modes Q, which ere obtained when grevity is neg-

lected. The second set of modes are very nearly the sloshing modes of
the fluid in a rigid tank in the presence of gravity. These modes have

e By e e e bl 2

extremely long periods as compared to the 9, modes and give practically

no contribution to the displacements and stresses in the tank, The grave
ity sloshing modes are required for the analysis of possible fluid spille
ing from the tank and will be considered in & later section of the report.

The modes % obtained by neglecting gravity will thus be used to determine
tha stresses and displacements in the shell.

. . o - e mu om e m a o m e e o m e @ = m wm = e m e ® e W m o m _a - hFCIRJCIL N,
e Y e e T N e W AT W W e T T ST W T W W, e A e i e A R e U W S L A S S R ) .t M e, v
T S i A S S S SR S T T NN T N



Solving Eq. (IV-49) for Ani’

Am=— B2l 4 jn (<= 42,3, =) (zr-50)

203,

end substituting Eq. (IV-50) into Eq. (IV-48), we obtain the equation

on the generalized coordinate qn(t),

N . DZ' S P -
[204- M,, + ‘Z:,(ZDM“ Z—D—i—(z) Z/’) 7 A;ZM = (LZ"‘S’/)

Equation (IV-51) implies that ths kinetic energy of the filuid, Eq. (IV-39),
(IV-l40) can then be written in terms of the generalized coordinate qn(t)
only:

T ttoret = Cﬂi 2C) (Z-52)

where the value of Eh is given by

Cn=0D * Z (D - (or-53)

4D34 )

Bubstituting the spproximate constants into Eq. (IV-52) and Bq. (IV-53),

th

the kinetic energy of the fluid in the n™" mode becomes:

7__ =/2:£%z Fpﬁsz -%Z/:Zéazﬁ[ o?,‘,"'}z_f“”h(d”‘ﬂ")] _
/)f/(/// 4 6 Py 0(/)(. 3'2/-&(0(” "“/72)
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The "virtual mass" of the £luid in the n° mode, m_, 18 defined so

th

that the kinetic energy of the fluid in the n~ mode is glven by

L

Z7
T s = 222 / 7 (2,92) a oz @-55)
o (4

where w n( z, 8, t), the radial displecement of the shell is given by
Eq. (IV-16c). The totel kinetic energy of the partially filled shell

plus the fluid in the nth mode becomes

zisl 2T 9L
. 4 (4 .
/= %7 /lz,,z-f Vs W, / RdE IZ 4 /77__2-'1—’7 Wy ad9 /2 -
o /o . o /e (ﬂ’fé)

The virtual mass of the fluid can thus be considered to be an sdditional
tank mass moving only in the radiel direction.

Substituting Eq. (IV-16c) into . (IV-55) and equating the result
to Eq. (IV-5Y), the virtual mass of the Tluid in the n°" mode, m_,

becomes:

k

o2
N, = /4 _L/_f G247 /‘o%z.h”/’(d”‘%y -~ 6#0/;(0:%)
1 1 Lo Ly 2P eni-n Nt L (o —172) :

=/

2

/ L +~ / _ Tank é"" LZL )
2K pé %:é—__ ‘/bﬂ/;é/m. d‘:é) 20 IL S/ﬁﬁ/ﬂ(/rc %’9

Z0p 7L
x

a




For couvenience Eq. (IV-57) moy be written as

Moy = € P8 (IV-SB)

where ¢ 1is the quantity inside the braces. TFigure (IV-2) shows ¢h
variation of €, vith the mode n for the various fillinge denoted by

7 = 0.5, 0.75, 0.9, and 1.0, The computations were made for a tank for
which L/a = 0.8 and include terms up to and including i = 3 in the summae
tion in €,

The motion of the fluid surface at z = + Zé in each mode n, 1s
required for the analysis of the response of the partially filled tank to
dynemic loading., This analysis 1s given in Chapter VI of this Report.
These motions can be obtained by an integration with respect to time of
{he longitudinal velocity vi on the fluid surface z = + Z% o Using
Eq. (IV-37) and noting that

Vot \r'g .. Lg -0 (1v-59)
the velocity of the fluid on the surface z = + Zg is given by Vz3. Using

Eq. (IV-36) and Eq. (IV-50), the velocity becomes:

ettt [
V_] = n IL ne a/f)- - " —
,..q QYT vy e

' T °‘ﬂ€£? .
.._.5”)2 Fotl) + -fw;/l("m%:))] ;_;(@(”‘)) cos 78 gn(t)

Integrating with respect to time and noting that the initial displacement
of the fluld is zero, the fluid displacement in the nth mode (Measured

positive upward),bn(r, 6, t) i given by the relation
w

7 n(fs 8, t) = Z7n1 (r,6,t) (1v-61a)

(-c0)

o -




2 2 “ﬂbﬁ”/’@(ﬂc %/
5/7,& (f'v?) E ] (”A_” /- 20(,7/.3'/— (’(m
— + Tonh (Xt JL)/ X 4..4"‘2 cosnd )
Bz (e ) C"Z)F () 7 /?zz’-ub)
Revriting Eq. (IV-61b) as
Cc_7L
% ng(Fs & t) = < BTy n0 g (t) (1v-62a)

where

ﬁ = ZMLﬂﬁéé(m%) /._ / ( / _ ! +
7ne ;Z;@gkuykg<és.‘/7f) 259<ﬂu€g‘ 72»7¢5(5044 gﬁ;’ <524Z4Qé{¢¢_%%;)

* 7'?/74@/% % Z)] (i b)

and considering a tank with L/a = 0.8, the values cf the coefficients Bni

are given in Figures (IV-3)-(IV-8) for the modes n = 1-6 and 4 = 1, 2, 3.
In each case, the coefficient is given for tank fillings ranging from

y = 0.50 to 7 = 1.00. Table (IV-1) gives the corresponding values of

the roots a., for use in Eq. (1v-624).
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b) n=0

By
o t—"

Consider the potential function ¢1 (r, 2, t)

2 !

1) r_ 25 -
¢1-;[2 - (x4 2)]%@-) (1v-63) Z
vhich satisfies the equationvaﬂil = 0. The component of velocity in ~J

the radisl direction is
r * 6k ]

Y= tE %) - (1v-64)
For epplication in the forced vibration analysis of Bection (VI),a t-
indcpendent redial displacement of the shell, v = qo('c) , ¥ill be con-
sidered, where qo(t) is the generalized coordinate of the shell mode
D= 00

Noting thet the radial velocity of the shell at r = @ is given by

A )
AL (Iv-65)

the boundary condition of Eq. (IV-7) is satisfied by the potential

function ¢1 (r, 2, t). :f
The velocity components in the tangential and longitudinal directions "
are respectively
L
vg » 0 (IV-66) Y
1
2(gs 2l Sty *
v!l -4z (z + 2) qo(t) (Iv-67) 3

The ZTluid potential ¢l gives & longitudinal velocity component Ve 0 at

the bottom of the tank, 2 = « z%‘- , thus satisfying the boundary condition

(5) Bee footnote (2) on Page {IV-5)

e, . . P Tl R R A AR G LI T N ARG
A N T I PP PR T S L RN T Netetevae AN ANAS R T e K
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of Tg. (IV-8).
To patisfy the condition of zero pressure on the frce surface, a
sccond fluid potential ¢2(r, z, t) is introduced. This function rcpre-

scuts the sloshinz motion of the fluid in a partially filled rigid tank.

The velocity potential ¢2 1s chosen as

b, (rat) =) Ao aloh)cosnfies(zr 1]
2 L Rol I (<oi) simbi(etoc IE) (F=e8)

where the values of a i are the zeros of the derivative of the Bessel

Functions of order zero,

I (a.oi) = - Jy (a,oi) = 0 (1v-69)

The velocity components due to the function ¢2 are

% =_§- A;ocj;(dagg) cashf‘_z‘:i(e_‘_ %Z
/2 L=/ (7; (O(al.') S//?/) (9(0(_%) (Z’Z-'70)

re,= O @‘—70

, 2 A'a; Io (Fo-£ ),5//7/7@91. (e-#— 2L 2]
Va, = < z r-72
2 ; Jo (o(oc') smh ("‘OL%) ( )

Eq. (IV-70) end (IV-72) show that ¥ ] «0 and that Vv J = 0. The
r z L
2) r=a o ‘Lé

corodinates Aoi(t) may be expressed in terms of the generalized coordinate !

of the shell, qo(t) in a manner similar to the case where u ¢ 0.
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To find this relation, consider the general fluid motion governed by
the potentiel function @ = g + ¢2 80 thaet the velocity of the fluid in

any direction s is given by vs r Vsl + Vsa. The kinetic energy of the

fluid moy be determined from Eq. (IV-11),

T~ &[T 609 st

(r-73)

which upon substitution of the appropriate values of the space derivatives

of ¢ becomes:

7—}/,,,4 7p| 452 ZyL. g,araz_ Z /40: + 2_3;51_7 2t
(79

Eq. (IV-74) may be written as -‘s
=
=2 -4 r
; o twd = Do Zo * Z Do2 ZOAO‘- * Z Doz Aoi (v—75 ) A
L=l %
where nf
9L . 233 b
D =g + = 7L IvV-76 o
o = TP "‘E“ 37 (1v-76) 4
.
Dr1pas R
Doz = = S5 (Iv-77) i
o .
ol R
5
and :
3 g
D =% 4 .7L ‘IV-718 )
V-7 ) tal
°3 20, tanh( °i )

Q1J

v .:"‘-,"'-."_‘..':'t -.“-*:,'-.,'- :‘-:.‘- -.'-:." .'.'v‘:" _, > _p\ ",). '.::‘: =, S . hS :’- :!’.-u yay n

.
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ILet the kinetic energy of the shell in the zero mode be

Toshe11 = %~ .ﬁ (1v-79)
end the potential energy of the shell be

Voshell ™ 22: '-oq(a; * (1v-80)

Proceecding in a similar manner to the case where n ;f 0, the Lagrangian

equations of motion on the generalized coordinates q O(1;) and Aoi(t)

become:
00
E&o+ 2DOJ q, + Z D, Ay + Ka, =0 (1v-51)
1=l
Dogd + 2Dohy = O (1=212,2 3...0) (1v-82)

Eq. (IV-81) anad (IV-82) satisfy the condition that the pressure on

the fluid surface z = ??.'__21'. = O,

It may also be noted that the effect of gravity forces has again been

neglected.
Solving Eq. (IV-82) for Ay
1)02
Bog = = 2D, % (1v-83)

and substituting this value into Eq. (IV-81), the equation on the

generalized coordinate qo(t) becomes:

x4

< _2 -
ZDa+Mo~”/§°D?—os jo o+ /gja=o (125-34-)

Equation (IV-8L4) implies that the kinetic energy of the fluid can be

written in terms of the generalized coordinate q, (t) only,

-
AR .
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= @ .
Tor1uta = Co % (V) (1v-85)

vhere the value of '50 is gilven by

o 2
= D()2 (IV-86)
=% 'Z Fﬁ’g B
i=l ° _‘3
Svistituting the appropriate constonts into Eq. (IV-85) end Eq. (IV-85), N
|
the kinetic encrgy of the fluid in the O mode becomes ‘mﬁ
A
33 T 2 g
;o o F/Dazlééf"g‘%?é B O(Zﬁ 727/75(’(04%;4-’)/;0 S ;
4z &t (17:57) T%
i
The "virtual mass" of the fluid in the zero mode, m_,, is defined ft%
80 that the kinetic encrgy of the fluid is given by =~
3 B |
ﬁ ”7 Zir [ ol . '*';
- = e R '
- 7;7‘/1/// ,Wa (ZY‘QB) ]
o é 3
"
and v_ is glven by Eq. (1v-65). Bubstituting this value of w, into ‘
Eq. (IV-88) and equating Eq. (IV-87) and Eq. (IV-88), the virtual mass (- ]
of the fluld, m , becomes ;
z & ot ¥L .‘"‘5
Myo = P4+ 255 - ol e 7-589 .
3 - ") ?
54 l=) e 7% ( ) o
The motion of the fluid surface at @ = + Z—é’ in the zero mode is ’
obtained by an integration with respect to time of the longitudinal ;{‘.} ’
t
velocity Vz of the filuid surface z o + % + This velocity is given by .
the eum of Eq. (IV-67) and Eq. (IV-72). Using the relation of Eq. (IV-83), t
2




[ DTN

the veloclity becomes

VJ =E§é+ZZfénhﬂa¢%é)Z@ocg i)
L=/

Zax "'éz!: e 7;6(0() (-ZZ;¢0)

Integrating with respect to time and noting that the initisl displace-
ment of the fluid is zero, the fluid displacement at the surface £ = + —é‘

in the mode n = O (measured positive upward) ,‘7 o(r, t), is given by ths

relation
}o(/ﬂj = 2245 (“}*"2:7“ (rt) (F-21)
where |
Foc (7%) = m:«ﬁ(o%}i))g(ﬁ%) 7ot (@-22)
Writing Eq. (IV-92) as
Jotler 8 = By gy (t) (1v-93)

the values of B, are given in Fig. (Iv-9) for a tank in which '2' = 0.8.
The coefficients B oy BT given for tank f£illings ranging from y = 0.50 to
1.00 and for { = 1, 2 and 3.

Using Bq. (IV-58) with n = O and (IV-89), the values of < for o

tank in which L/e = 0.8 are shown in Fig., (IV-2) for the £illings y = 0.5,

0.75, 0.99 and 1.00.

s




¢c) nf 0 Five Constant Approximetion

The procedure used in tae present.section for the determination of Nt

.,%’

the virtual mass and the fluid displacements is exactly analagous to -
\-‘li

the procedure used for the three constant approximation of Section (IV-a). =

Consider the potential function @, o

n "-J

2 T b

¢1n = - Bn E‘ + o ;:n-l cosné qn(t) (IV-94) _
Y Y

G, = —- (y -1) + = 7L wn . (1v-95) 4

wvhich satisfies the equation V2¢1n = 0. The component of velocity in o
the radial direction is

o (6 s ] @ eme G 0 @)

L
L] L] '
o A A
shanriadl

- a

Equating the radial velocity of the shell to the radial velocity of the

| OO

fluid at r = a, Eq. (IV-7) may be used to evaluate B,. Defining the
generalized coordinate of the nth shell mode as qn(t), the shell displace-
ments are given by Eq. (IV-16) where u(z, 0), v(x,6) and w(x,0) are
defined by Eq. (I-25)-(I-27). The value of v is obtained by differentiat-

ing Eq. (I-27) end shifting the axis of = coordinates to that of Fig. (IV-1):

. 1, o AR

va=-C z: G + -7-5] cosnf qn(t) . (IV-97) 3

» ' E

Bubstituting BQ. (IV-96) and (IV-97) tnto (IV-T), the value of B_ 1is =
can )

Bn - - T— (Iv“ga) ::'-,_
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and the velocity components due to ¢1n become

.0 Ik X ryn-1 o (&) .
v " a Gn + 7L‘] (a) cosnd qn(t, (1Iv-99)
- b8 2 ryn-1l >t .

Vo1 C, % [(}n + 71‘] (a) sinnd qn\t) (Iv-100)
& fn | * ‘
V=G 81— n;;‘coane qn(t) . {Iv-101)
7Lna

Proceding as in Section (V-a) and noting that the expression for
the longitudinal veloeity v ., Eq. (1Iv-101), is of the same forn as
Eq(IV-20), the putential function ¢2n and the corresponding longitudinal
velocity v , are glven by Eq. (1v-22) and (IV-24) respectively. Using

the boundary condition, Eq. (IV-25), the expressions for C

ad and the

velocities v, and v,, are given by Eq. (1v-30)-(1IV-32).
To satisfy the condition of zero pressure on the free surface,

the fluid potentiel ¢3n is.introduced. The expressions for ¢3n and

the corresponding velocity components, vi3, vb3 and vza are given by

Bg. (IV-33)«(1IV-36) where the coefficients Zhi are still to be determined.

The coordinates Ahi(t) can be expressed in terxs of qn(t), the generaliged

coordinates of the shell motion. This is done by utilization of the

condition that the fluid surface at z = Z% must be a free surface with 4

zero pressufe. i
To determine this relation, the kinetic energy of the fluig,

Eq. (Iv-38) is evaluated:

A
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z

-:- YA é an --- 7‘27/7/) o(ﬂt . L)]
T " s R /_// 36n +4 Z L5 4 (t)-
/Ula'

oUfs a‘zL‘(a(m )
L=l

"-’429—[2/7 ]Z—L 26+ 1~ / -
%, 7 '/'4/7/76(/11. a'LX0< L ..... + .Sln/?(o{m 5—1")(4'14%4'

- sl i B O )

Eq. (IV-102) can be written as

— ~ .2 Y " 'z
T DI Defh o B Skl

whers

7;@__ ey /35,,+.L/ GT-r0t)

3 L,
Dy =~ Tt [P f Zent! Sanhtim ) ©

/ _ +anh (’fh‘[, %ﬁ-‘) ( TT—y0 -5'7 ’_‘}i
22

-+ Sinh En zéz/’(‘" 3_51_9 e 2 o
and D), end Dy, ave given by Eg. (Iv-42) and (IV-44) respectively. B
o
Proceding as in Section (IV-a) and using Logranges equations, the ¥
relation between the cvordinates A,y e0d g is given by S
-
- D PY "1

o 21 ’
Ani" 2D qn ’ (IV-106) 5
31 :._l
3
y

- - - - - - - - - - - - » .~ v ~ - - = T * -
- - - - - - - - » - - - - - - - - -~ - - - - - t “ - « - o - - - - - - - - -
D L R P L S e e e e, Vel .
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Using Bq. (IV-106), the kinetic energy of the fluid may be written in

terms of the coordinate q (t):

?a '/zn/u ]
—7-—— : é:_ W/)d z,, L [;"n y _ (Jtz /7[ (/na 2
;l/um/ a < = ﬂ(/)L XZAZ(’{/?L. —_”z)

£

7"?/‘ /7 Anc ) G o / ' + / —
) iR et - gy * gD

o=/

‘/‘a/?/J(‘Ync £) [
) ?.:/: é“) (ZF' - 107 )

Substituting Eq. (IV-95) for G into Eq. (Iv-107), the kinetic energy of

the fluid in the mode "r" is:

| 5= .
Tz F Tuugie =[5 o)t Bz + 7% szn(f-‘)

_ — (o7-108)
vhere the coefficients My My and 1, ere respectively

2 oAne T
602[7 "Jfﬂ.ﬁ”b\/ " 2«2_)]

4ri-or Z -
/7/7 ANy “ (3+ ) z, ,

L=/ 0(,7/, Xz[_z' (0(»‘7(.8""/72)

é?“?ﬂ/) (ﬂfm. 5*) ) / _ y (o(,,zaa'/_)
L) T ) g
" 2;’;/ (@ -1074)
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7 L=/ ({”/4("(/26 ‘-/72) (IE“/O? .é)

ol

12 027@/7/7(0(/7,4 %’f—‘)

= .Bcv(éﬂ-bl~zzf /
= S5z Z -
'7»9 F7EL & A y4E (G ~n%)| 24, %’_74_« .sm/)ffwia’/j

— / _ 7‘4/76(0(04% . 2¥~-1
20 3L famh(dpe %)  2py e 23
2 a

(1z-109<)

The motion of the fluid surface at z = + 2% in each mode n, is
required for the analysis of the response of the partially filled tank
to dynamic loading. These motions can be obtained by an integration
with respect to time of the longitudinel velocity vz3 on the fluid

surface z = + % Proceeding as in Section (IV-a), the fluid dis-

placement in the 2*® mode (positive upward), 3 n(r, 6, t) is given by

' the relation

£ almr 0 %) - mem 6, t) (1v-110)
e

where N ‘

_ xL 2X 7"0/?/7@/7/.@:4 /—_ Lo / / —— o

j/’l/, ('79”9) - [C” a (o(”it/)z) = LG” 2 29(/),45%' T2rh, 0(/74%)
"__7“—//; ) 7‘4/7/1@,74 %} .__...._.__‘7’; ("/”Lg)cos/vaj” ) i |
=/hEtne %) I (Ane) (- 111) R
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s = As in the case of the three constant approximation,‘3 ni(r, 8, t) can be
- - written as

C,7L 3 s (a 4T
ni n

“x
1

’7n1(‘" 6, t) = 2 ) coas nf qn(t). (1Iv-112).

‘o e

- 5 Zo(nx,fa”ﬁ/’f”"%é - -/__L___._.-———/ / -
/qu" fa %) T (Elne)) 7 2 2tne Z\ T2/ (A i)

?:. : ”5//50—(}7“ 7%) + tonh @ %:aé‘)] (zz ~1/3)

1€ 50
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3.832

7,016
10.17
13.32
16.47

-107-

Table IV-l

/
Roots @ , for ;rn(“hi) - 0

gel
1,8l
5.332
8.536
1.7
14.86

-

ns=2
3.053
6.707
9.97
13.17
16.31

LI I A YN N AL IV it i el N
PN . \.a‘\.~ﬁ~’~1q\«:.1qf.:.\\).'

n=3
k.20
7.89
1.17
1k.37
17.52

nek
5.31
9.0k
12.33
15.53
18.79

D PR I L T TS T TN
el N it lmtlaflaMMe Qe fodoe®erwhhoeodo

n=5
6.40
10.52
13.99
17.27
20.53
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n=b6

750
11.7h
15.27
18.60
21.88
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Y. Modes and Frequencies of Free Vibrationg of Partially Full

Cylindrical Tanks.

Expressions for obtaining the modes and the frequencies of free
vibrations of partially full cylindrical tanks are presented in this
section of the report. As in the case of an empty tank, two sets of
approximate displacements are considered; 1) & set in which five con-
stants are reteined in Eq. (I-1) to (I-3) and, 2) a set in which three
constants are retained. While the latter will glive satisfactory estimates
of frequencies for most applications, the former are required to give
accurate values of strains and stresses for use in forced vibration
problems.

Employing the Rayleigh-Ritgz method as in Section I, the total kinetic
energy of the partially filled shell in the nth mode 18 given by the

relation

T =T

n nshell +I

nfluid (v-1)

vhere T is given by Eq. (I-7) and

nshell Tof1uia
for the three constant epproidimation or Eq. (IV-108) for the five con-

is glven by Eq. (IV-55)

stant aepproximation.

The potential energy of the combined system is not effected by the
fluld in the shell (the effect of gravity forces on the potential energy
of the system has been neglected in Section (IV) and is given by Eq. (I-10)-
(1-12),

As in the case of the empty shell, frequency determinants will be

given for the case in which both membrane and bending effects are considered,

£ poiat
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and for the case of a membrane shell. For the mode n = 0, special condi-

tions prevall, and this case will be discussed in part (f) of this section.

a) Approximation Using Five Constants - Membrane and Bending Effects
n f 0

Let the displacements of the shell be given by Eq. (I-4)-(I-6) which

are repeated here for convenience.

2
u(z, 8, t) = u(z, e)eiwt - [U-z— + X(Z—— - E‘E ) cosnf em’t

a a2 2 (v-2)
v(z, 8, t) = v(z, e)eiwt = V-:- sinng %% (v-3)
w(z, 8, t) = w(z, O)eiwt = E’ + W(§ - -2—-2'] cosnd ei%® (v-l)
th
The kinetic energy of the shell mass in the n” mode, Tn ghell’ is
given by
o ex L
i 2 2 2
Toshell = 5 f f (“n +VO+ wn) 2404z (v-5)
o o

end the kinetic energy of the fluid, T fluig 18 &lven by Equation (Iv-108)
for the five constant appro:dmation:(l)

mi i

[

2
m, fan —_—
1 — —
Tatruta =~ b® ‘ nr s Wt B R e Y“, (V-6)

(1) For free vibrations, the time dependency of the displacements is taken

as Oiwt .
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Subst:suting Eq. (V-2)-(V-4) into Eq. (V-5) and adding Eq. (V-6), the i

th

total kinetic energy of the partially filled shell in the n~ mode 18

obtoined from Eq. (V-1):

mﬂem

T, = -15-—-— t3a !—_02 v2+¥;2— (1+lmX3B-)+3 s

PR Al S =
g (1+ -7 ;,L:)Yzﬁnﬁgf w:l (v-7)

rolus

where the coefficients n_ ,'ﬁ; and-i; are given by Eqs. (IV-109a)-
(Iv-109c) respectively.

The potential energy Vh stored in the shell can be expressed as &
function of the displacements u(z, 6), v(z, 6) and w(z, 6) by Eq. (I-10)-
(1-12), which upon substitution of Eq. (V-2)-(V-4) become the expressions
given by Eq. “'-13) and Eq. (I-14).

hpplying the Reyleigh~Ritz method, the following set of five homo-

geneous linear equations in the five unknowns U, V, W, X and Y are cbtained:

2
o - Lo (1 -y)n? k(L -v)n?| U o+ |-2BY =)y (B8R -V iy
2 2 2
I~ 6V
+[}§E{IX+[F] Y=0 (v-8)

i&(;}__li] U o+ o - §1 -N) 9(1 v]) v{ gngl v])

+ [8(14»13\)]}( +[—] (v-9)
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[kal-anJ “P*M] v,
2 2
233 . t L

- 5%] U + {_ E&l_g_liy;:] vV o E}- k (3;:ﬁi)n2.] W o+
“3 2 ;% 1&1_%_)3&3 k3(1 - )t X 3 Y=0
+ L}w; - - < 80 + 2t =

-

(v-11)

)ig U 4+ [-5%} vV o+ l:}3§;'%§ %:‘ W o+ {Eig] X

4{;—2— {M (1 +1-§ﬁ%:-in) -1 - k (1- na)e}:l Y0
(v-12)

where k and M are defined by Eq. (I-21) and (I-22) respectively, 7 is the

fractional helght of the £illing § == and n_, 7, and n_ are defined

by Eq. (IV-109a)-{IV-109¢).

Nonvanisghing solutions of Eq. (V-8)<(V-12) and free vibrations exist
only if the determinant of the system vanishes. This leads to the
determinantal frequency equation shown on Page 96.

For given values of §, n and 7, Eq. (V-13) ylelds five positive roots
MJ, defining five mutually orthogonal modes, of frequencies

M.Eh

T J=1,2, 34 5. (V-14)
m, & (1 -y°)

£t
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The shcpe of the mode pertaining to a particular frequency wJ can be found
by computing the ratios g s % » % and % from any four of the Equations

(v-8) to (V-12). As in the case of the empty tank, in general, only the 4
lowest fraquency @, will be required and for simplicity, the subscript J
will be dropped for each of the constants UJ’ VJ’ WJ, X'j and YJ‘

Once the frequency w and the ratios of the constants have been ev-

eluated for a particular value of n, the displacements of the shell become:

B 2
u(z, 6) = c. % -E + % (3—2- - -3—1"-5-] cos né (v-15)
vt a t
v 2
v(z, 6) = C_ |5 E] sin nb (v-16)
w(z, 0) = c, Eé + -:- - 'é'g ) cos nb (v-17)

The constant C  is egain chosen so &s %o normalize the mode to the

total mess of the empty shell. The normalization condition thus becomes:

2 2 2 -
m, ff (un+vn+wn) adfdz + 2 Toyuaq = 2%elmy = M, (v-18)

- where "i"flui 4 18 the space dependent part of Eq. (IV-108). Bubstituting
®
;’ . Eg. (V-15)-(V-17) into Eq. (V-18), the expression for the normslization

coefficient C_1s

B @t R B QP

T vt..t 7
Q
=]
g
"o T
1

- - 3.2

e M7 $on Y2, = . 3pa ,Y

E = + (1+ ——3;;—-) (w) + 0, %’ (ﬁ) (v-19)
. 1 1

- -

o

...............
......
............................................
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Using Eq. (V-19), Eq. (V-15)-(V-17) give the normalized modes of free
vibrations of the partially filled tenk.
The normalized strains and stresses in the partially filled tank !
may be evaluated from Eq. (I-30)-(I-35). using the ratios of the constants

and the expression for the normslization coefficient that have been

derived in the present section.
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b. roproxiration Uzing Five Constonts-Membrane Effects Only.

i = n#o

i - £s in the case of emptiy shells, & membrane approximation may be
;' ned? .n which the strailn enerpy of bending, V2, is set equal to zero.
Fur tain shells in which the thickness to radius ratio, h/a, is very
sr-11l, excellent approximations of frequencies, strains and stresses can

¢ ~»teined from such e procedure for modes with & low circumferential
vav2 number "n". It moy be noted that the range of h/a and n for which
tls piabrane assumption 1s permissible can be estimated by metbods
sirilar to those of Section III of this Report.

The frequency equation and the mode shapes for the partially

fule membrane chell are obtained by sctting the value of the constant
- % c¢rual to zero in Bg. (V-7)-(V-1l). The system of homogeneous eguations

then becores:
EM - 5 - (l -)))nej U + - 311(3;)-1! v +[0] W o+
, ¢ .I
3 6y
‘- .__egl X + i-—gz Y = O (v-20)

3mBY -1 |y 2:4-15—1—;—&-2:%\1 +[g:]w+
3

lon

2

— e

+l}§(1+13v;‘] X +[§%] Y = 0 (v-21)

2 1
[ %E:l Y = 0 (v-22)

By @By By By N Ay R s et gttty o, A
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3 Ton(1 423y 2. 19 3(1 -Y)n®
] o ] v D) [dee o),

+ [-g-ﬂ Y=0 (v-23)

[\e]

3,2 B
3 +[-g {M(1+1§L93 n)-l} Y = 0
;- : ! _
g (v-2k) o
3 The determinantal frequency equation is obtasined by setting the -
E' determinant of the above system equal to zero, or by setting k = O in 7
: Eq. (V-13). For this determinant see Page 10l. For given values of §, =
n and 7, Eq. (V-25) yields the five positive roots M,. The shape of the -

J
mode pertaining to a particular Mﬂ can be found by computing the ratios

) %, % and % from any four of the Eq. (V-20)-(v-24).

lc

5 Again only the frequency corresponding to the lowest root Ml, will

N be of interest. Eﬁ

"; Once the frequency w and the ratios of the constants have been evalu- _
v
K ..
f ated for a particular value of n, Eq, (V-14)-(V-18) mey be used to compute -

E“ the normalized mode shapes of the tank. The normalized strains and stresses Y

in the partiaslly filled tank may then be evaluated from Eq. (I-30)=(I-35),
using the normalization constant Cn and the mode shapes of the present

section. "
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AT ™

CRs

¢) ! mroxiration Using Threce Constants - Mombrane and Bending Effects.
_:.
> n f 0

Let the displacements of the shell be given by Eq. (I-42)-(I-l4)

l“l

which are repeated here for convenience:

0y u(z, 8, t) = u(z, 6) ™ .y s cosnd e1®® (v-26)
v(z, 6, t) = v(z, 6) et .y % sinno - (v-27)
o w(z, 8, t) = w(z, 6) 1%t W é cosnd el®® (v-28)

- The kinetic energy of the partially filled shell in the nth node is
given by Eq. (IV~56) where m 18 glven by Eq. (Iv-57). Substituting

Gy Eq. (V-26)-(V-28) with Eq. (V-5) the kinetic energy becomes

2
m,nwa -3
L i'-é l}z s V2 e WP+ Kny{] (v-29)
" where
: K E!B o8 (9 29a)
- n m " € m ~29a

The potential energy Vn can be expressed as a function of the dis-

placements by substituting Eq. (V-26)-(V-28)into Eq. (I-10)-(I-12), thus

obtaining the expressions given by Eq. (I-46) and (I-ULT7).
Applying the Rayleigh-Ritz method, the following set of three homo-

geneous linear equations in the unknowns, U, V, and W is obtained.

[ -_-6_ - nz(l-\))(lﬁ(] U+ :..32%%‘1‘_11 V+E{Y+ knaLal"_)))}] =0

2
(v-30)
l:-'!——’ﬂe%‘)——'lil U o+ [:;M- af - -3 (1) (1+3k)] v o+ En +2*59-%'ﬁ] WeO
3 3
(v-31)

.............
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[ v

2

{V‘*‘ lmz,(l-l)}}:] U s En + glg_lél-))ﬂ v
¢

—

2
+[2_M(1+Kn73) -2 - % {(l-na)a % + 2(1-))):1?_‘&! = 0
)
(v-32)

vhere k and M are defined by Eq. (I-21) and (I-22), and 7 is the
fro2tional height of the £illing.

Nonvanishing solutions of Eq. (V-30)=-(V-32) exist only if the
deterininont of the system vanishes, thus leading to the determinantal
freauency equation shown on Page 104.

For given values of §, n and 7, Eq. (V-33) yields the three positive
roots MJ, defining three mutually orthogonal modes, of frequencies given
by Cq. (V-14). The shope of the mode pertaining to a particular frequency
aﬁ can be obtained by computing the ratios % and % from any two of
Eq. (V-30)-(V-32).

As in the case of the empty tank, the lowést frequency oy only will
be requircd end the subscript § will be dropped for simplicity.

The displacements of the shell may be written in the form

u(z, 0) = C, %'é cos. nf (v-34)
v(z, 6) = C_ & Z 5in g (v-35)
w(z, 6) = C, % cos ho (v-36)

vhere the constant Cn is erain chosen go as to normalize the mode to the

total mass of the empty sheil. The normalization condition is given by
(2)

Eq. (V-18), which upon substitution of Eq. (V-34)-(V-36) gives the follow-

ing expression for the normalization coefficient Cn:

" —
(2) For the three constant approximation, Te1uiq 18 the space dependent part of
Eq. (IV-55).
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(v-37)

Usinz Eq. (V-37), Eq. (V-34)-(V-36) give the normalized modes of free
vibration of the partially filled tank.

The results obtained from this spproximation may be used where an
estirate of the frequency of vibration of sny particular mode is required.
However, the present spproximiation does not give sufficiently accurate
rcsults for the strains and stresses in the shell, and the approximae
tion using five constants must be employed when these quentities sre

required,
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d) Aoproximntion Using Three Constents - Membrane Effects Only.
n#0

As in Part (b) of this section & membrane approximation may be used

to obtain the frequencies of sufficiently thin shells in the lower

modes of n. The frequency equation and the mode shapes for the membrans

shell are obtained by setting the valus of the constant k equal to zero

in Eq. (V-30)=(V-33). The determinantal frequency is given on Page 107.
The remarks of Part (c) of this section regarding the validity

and applicability of the three constant approximation also hold.

for this case.
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€) Determination of Approximate Frequencies of Portially Full

Cylindrical Tanks - Rayleipgh's Method.

If the frequencies and mode shapes of an empty cylindrical tank are
known, en expression for the determination of approximate values of the
frequencies of the partially full tank, in terms of these quantities
cen be derived from Rayleigh's principle. For a partially full tank,

Rayleigh's principle may be written for the nth mode of vibration:

=M T - -
quax “nshell, max * lnfluid, max vn; max (v-38)

where the subscript "max" indicates the maximum value of the respective

quantity and the Tnshell, Topluta 804 V, are glven by Eq. (1-7), (1IV-55)
and (I-10) respectively. Writing T in the form
n, mex

2 .

Tn, mex ® %a Tn, max (v-39)
vhere Tn is obtained by substituting the displacements u(z, 6), v(z, 6)
and w(z, 6) instead of the velocities, into the equations for kinetic

energy. gubstituting Eq. (V-39) into Eq. (V-38), the frequency of

the nth mode of vidbration of the partially full shell can be written

in the following form:

by
of W Dpmax_ nshell, max
n e

T'nshell, max Tnshell, max * Tnfluid, max

(v-50)

Substituting the mode shapes for the empty shell into the expressions

for TQ and V, in Eq. (V-40), and noting that for this case, the frequency

of the nth mode of the empty tank, o

» is given by

2 n
wne - —_&_—_ (v-hl)

Tnshell,max
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the frequency equation, Eq. (V-U40) becomes

2 o2
® = 8a (v-42)
where
8n e = nshell, max (V-43)

Tnshell, max’ T

nfluid, max
The value of bn for the five constant espproximation is given by the

relation,

coe%y 3 -
l+T—-[7 + 7nm w] (v-lk)

where C_ end 7n, %, ?/"n are given by Eq. (I-29) and Eq. (IV-109a)-(109¢)
respectively.
The value of bn for the three constant approximation is given by
the relation
l .
o) = (V-l&S)
2, .,2
¢k &7
14 S
where Cend K are given by Eq. (1-56) and Eq. (V-29a) respectively.

Equations (V-42)-(V-45) may be used to obtain epproximate values of
the frequency w of the partially filled tank for modes in which n > 2.
It should be emphasized however that for the mode n = 1 and for all modes
in which the strains and stresses in the shell sre requir ed, the value of
the frequency should be computed from the determinantal frequency equations
glven in Sections (V-a)-(V-d) and the correct mode shapes should be evalu-

ated from the corresponding equations given in these sections.

T

l y
e .
o ¥

T
o

-

v
L owlhe el

Loca

P
-t et




-149-

Teble (V-1) shows the epplication of Equations (V-41)-(v-k5) to
the cases of 9/10 full steel and concrete tanks. The value of the
frequency number Mn’ which 18 proportional to uﬁ is evaluated from
the relation

M= 5 M (v-15)

where Mne is the frequency number for the empty shell. It {s seen

that good epproximatiors to the frequency are obtained in both cases.
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f) n=0

The frequency @ of & partially full tank can be determined in
terms of the freguency @y of the empty tank. Noting that the displace-
ment of the shell in the mode n = 0 is purely radial, the total effect
of the fiuid £illing is an increase in the mass of the shell, By o

Congidering the gz-independent radial motion of the shell as
described in Bection (IV-b),

v = g5(t) (V-47)

and using Eq. (IV-88) and (1v-89), the increase in the msss of the shell
due to the f£luid filling of height [L is given by fm . The frequency
of the partially full fuel tank can then be computed from the relation

2 2 1l

o = (V-‘l&)
o] oe

1+ ZE!B
oy
vhere

2 Eh .

w = (V-h9)
o8 (1. v2)m152

et LR TP ST shhaldtusonsanncioaiotaiiiaicinditiaditiiiod




-151-

Determination of Mn = bn%e

Unprotected Steel Tank 9/10 Full

1

h
L/a=0.8, 2™ 1500 ° Y = .9

i
n Mo B, M M
Eq.(I-41) Eq. (V-4k) Eq.(V-16) Eq. (V-25)
2 .1906 .0495 .00943 .00809 i
3 .0859 .0578 00497 .00475
4 .0h32 .0659 .00285 .00281
5 .02h1 .07k 00179 00175
6 .0Lk7 .0816 .00120 .00120

Protected Steel Tank 9/10 Full

.

L/a = 0.8, 2 T 7" .9
n Me 8 M M ‘4
Eq.(I-23) Eq. (V-lk) Eq.(V-L6) Eq.(V-13) ;
2 1911 3859 0737 .0688
3 .0934 JAi229 0395 .0387

L +0659 <1560 .0301 0301
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. < VI. Modcs end Frequencies of Cylindrical Tanks with Windrirders (1)

In Section (I)-Section (V) of this report, approximate exvressions

- for the frequencies and modes of empty and partially filled cylindrical

storage tanks were developed. In obtaining these expressions, the effect
E
of the wind stiffening ring, i. e. windgirder, which is generally placed
:: at or near the top of the structure was neglected. The effect of the
-

windgirder on the frequencies obtained in the previous Sections can be
derived from a procedure using Reyleigh's Method. An upper bound to the
frequency of the tank with a windgirder in terms of the frequency Qo

of the storage tank without a windgirder is obtained. It will be shown
that for the type of tanks under consideration, about 40 feet high-100 feet
dlemeter, the effect of the windgirder on the tank frequency is very
small. In general, it may be neglected in computations and the formulas
presented in the previous Bections of this report can thus be used for

the determination of frequencies and modes of free vibrations of struc-

tures with vindgirders.(e)

- (1) The dimensions and the type of windgirders in the analysis are taken
from the American Petroleum Institute Specification for Welded Oil Storage
Tenks, American Petroleum Institute Standard 12C, Fifteenth Edition,

March 1958, Americen Petroleum Institute, New York, Pg. 13 and 70.

(2) This does not imply that the blast loading on structures with wind-
girders may not differ from the loading without such a girder. Information

on blast loading of tanks with windgirders is not yet available.
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Consider & storage tank with a windgirder attached to the tank at e
height T from the tank bottom, Fig. VI-l, If the frequencies and mode
shupes of an empty or pertially full cylindrical tank without & windgirder
are known, an expression for the frequencies of the stiffened tank is

derived as follows. Rayleigh's Principle, T

max ™ Vmax’ €80 be written

for the nth mode of vibration in the form:

TB+T nVn8+V

n oR nR (VI-1)

vhere Tn 5 and vns are the maximum values of the kinetic energy and
potentisl energy respectively of the empty or partially filled unstiffened
shell and TnR and V oR &€ the maximum values of the kinetic energy and
potential energy of the windgirder. Defining the quantity Tn as in

Eq. (V-39), the frequency of & shell with a windgirder is obtained from
the relation:

Vv +V
(L)r?—1 = :EE_____:n_B . (vi-2)
Tns+TnR

By definition, T

1 1 2
ns 3 Mna and therefore Vn8 -3 M o g where Mns and

ng  n
® . are the generalized mass in the nt'h mode and the frequency in the nth
mode respectively of a shell without & windgirder. Substituting the above

expressions into Eq. (VI-2), the frequency w 1is glven by:

2 2Vur
[i}) + t——
o ns Mns
W 8 e— (vi-3)

8
where M R is the generalized mass of the windgirder.
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Assuming that the shapes of the modes of the tank with the wind-
girder are the pame as the shepes of the unstiffened tank, the windgirder
E ring must undergo the displacements w(L, 6) and v(L, 8), of the tank at

the height z = Lj ;
= = vn L

S v(L, 6) = ¢l v 3 sin nb (VI-k)
SI n

- X T
w(L, 9) = C, rwﬂ + (gI—‘éi-—Iia cos n8 (VI-5)

IS N
oo, — N
3

where Cn, the normalization coefticient for the unstiffened tank and the

v Y
B mode shape ratios -‘-,9- and ﬁg are given in Section (I) or Section (V).
o n n

The potential energy of the ring, VR’ in terms of the ring displacements

v and w isa:
en an
I
Elr 2 Epfr 2
V. w2 f (vgg + W)© d8 + TN f (vg - w)© a8 ({vi-6)
[} o

,r which, upon substitution of Eq. (VI-4)«(VI~5) becomes

- awce [y 2
Do v .ER;I_RB_E l:we + (?.E_:.E)] Q- ne)a
| 2

nR 28 n 2a

e (v Y -
BeAr™y | Vo % i 2L-L)] (v-7)

The generalized mass of the ring, MnR’ is

an
Mp= 2TR = ppAy f (v2 + w2) a do (v1-8)
o

> .-t
- \‘.t v, 3
Y LR VS AR IO o
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,- .
Y

which, upon substitution of Eq. (VI-4)-(VI-5) becomes:

(

Voo v = )
2 n L2 n °L - L
MnR ==pR/\Rﬂ& Cn {kw; Py +[ﬁ; + (——2&—. )~l 3 (VI"9)

. HEMEE

e

Since in all cases, the modes of vibration of the unstiffencd shell have

b
‘% !I 'j l' .I

r

been normalized to Mi = 2naln&, the total mass of the empty tank, the

generalized mass of the shell in all modes "n" is glven by:

Y

M, = 2nelm, (vi-10)

A Once the frequency of the unstiffened shell, o _, is known, Eq. (vi-7)-
3 (VI-10) can be substituted into Eq. (VI~3) and the value of a?n can be

: computed.

Teble (VI-1) contains the values of the frequencies ® and.mn8 for

o the typical case of an empty steel shell, 100 ft. in diameter and 40 ft

- high, having the windgirder section shown in Fig. (VI~2).(3) The windgirder

has been attached to the shell at a height L= 39 £ft. It is seen that the

correction due to the windgirder ie very small; this correction is less

than 5 1/2 per cent in all modes. The situation in fluid fillea tanl.s 18
quite similar. Therefore, it is concluded that for the type of storage 3‘;
tanks under consideration, the effect of the windgirder may be neglected i{
and the formulas of Bection (I)-(V) can be used even for structures with |

windgirders.(h) :—;

(3) American Petroleum Institute Specification for Welded Oil Storage Tenks, :

Fifteenth Edition, March 1958, Pg. 13 and 70: ‘The minimum required section :

("
e modulus for & stiffening ring is Z = 0.0001 D2H2 vhere Z 1s the section Lo
2. modulus in in3, D is the nominal diameter of the tank in feet, and H, is N

the total height of the tank shell in feet. For a tank of 100 feet diameter

and 40 feet height, Z = 40 in3. The section modulus of the windgirder shown g

in Fig. (VI-2) 1s 47.7 in3 (See Pg. 70, A.P.I. Specs).

() Bee Footnote 2, Section VI.
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L= 40 £t., & = 50 £5., L= 39 26, A = 11.2 127, I, = 4b9 in

1=}
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Table VI-1

Effect of Windgirder on the Frequency of Cylindrical Tanks

O . (rad/sec)

217.4
140.3
ok.2
66.8

k9.9

Empty Steel Tank

w, (red./sec)

211.5
134.2
89,4
63,4
47.9

4

% Difference

2.7%
bobg
5.1%
5.2%
4,19

o

SO

PR

T




e

Dot bl
[ 2

_159-

¢
‘ w
Y
w=ACOSNE
v=BSINN®©
TI_ w & v PRESGRIBED
i
20 N
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VII Forccd Vibrotions of F mtv end Partiolly Full Cylindrical Fucl Ton'cs. i

The respo.ascsof empty and partielly (up to 9/10 of the height) full
cylindrical tanks to dynomic loading ave anslyzed in this Section. For
crpty shells, the blast loading consists of a radlal pressure dynemically %
epplicd to the shell, vhile for partially full shells, the vertical pres-
surcs of the blast on the surface of the liquid must also be considered. ;

Information regarding the pressure history is given in the various Armour

InstituégléLports andzfpecific methods for the utilization of the pressure E
data are developed in the present poper. The cases of a partially full 3
tank and an empty tank will be separately treated.

Using the modes of free vibrations of the empty or partially full
tank respectively as generalized coordinates, the response can be expressed ;
in terms of the infinite number of modes. The required frequencies and

modes of empty and partially full cylindrical shells were determined in

Sections (I) and (V) of the report respectively. For each integral value 1
"n" of circumferential waves in the shell displacement, there exists an 4
infinite number of frequencies ® g’ J=1,2, 3. « «+ . and corresponding 3

mode shapes unJ(z, 8), Vhd(z’ 6) and w (z, 6). Calling an(t) the
generalized coordinate corresponding to the mode "nj", the response of the

shell can be written in terms of a sunmation of the normal modes:

a(z 0 )= ) ) uyle Oayl) (vir -1)

n=0 J=1

(1) Blast Effects on Storage Tank Type Structures, Armour Research

Foundation Report Number
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v(z, 6, t)

W, 0, 0= ) ) (e 0gy(®) (Vi1 -3)
1

n=0 J=

¥Yhen determining the frequency numbers (which are proportional

Moy
to the) it is found that the values Mnl are smaller-usually very much

smaller, than unity, while the values of th for § > 1 are larger than

uniiy. The modes characterized by J > 1 represent primarily extensional
high frequency oscillations of the shell. For loads of moderately long
duration compared to the fundemental period Tnl
these high frequency modes give only small contributions to the response

for each value of n,

of the shell., The major response of the structure can be determined from
the modes characterized by § = 1 and all modes for which § > 1 are there-
fore dropped from the summation.

The special cage n = 0 has been discussed in Sections (I-e) and(V-f)
of the report. For the empty shell, an infinite number of frequency numbers
MoJ are found to lie between closely spaced limits, thus making & model .
analysis for the case m = 0O impracticable. A suiteble alternative method :ﬂ
to obtain the contribution of the n = 0 term i8 to consider the shell acting
as a serles of separate rings, each having & purely redial displacement

“b(t)' For the fluid filled shell, however, the displacements of the rings

cn different levels are coupled by the fluid and a spectrum of gradually ﬁ
)
b

increasing frequencies is again obtained. The fundamental frequency J = 1
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in the filled shell contains a;2in the major contribution to the response
for n = 0, as in the case where n ¢ O,

The analysis of the response of the shell in the mode n = 0 will
be discussed separately in Part ( C ) of the present section.

For the pressure loadings of moderately long duration under con-

sideration, the response of the shell can therefore be written in the form

o0

u(z, 6, t) = Z u (z, 6)q (t) (VII -b)
n=1
Wz 0, 8) =) v (5,0)q,() (VI -5)
n=1
Wz, 0, ) = w(2ag(t) + ) ¥ (s, O)a,(t) (vI1-6)
n=1

where the functions u, Vh and wh are the modes of free vibrations 9f

the empty or the partially full shell corresponding to J = 1. Both the
five constant and the three constant epproximations of Section I will be
considered in the following analysis. It should be noted that for cases
in which shell strains and stresses are required, the five constant analy-
sis should be used. Expressions will now be developed for the determina-

tion of the generalized coordinates qn(t) from the information given in
the Armour Report.
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&) BRlast Pressurcs on Fuel Tonks - Homenclature and Mecsuring Arranpement

The dynamic load information required to determine the response of
8 cylindrical fuel tank under blast loading is obtained from a report on
shock tube experiments by the Armour Research Foundation (See footnote 1,
Section 7). A description of the shock tube tests is given in the Armour
report. The gages were arrsnged to glve enough pressure information to
allow for & meaningful forced vibration anslysis of the temnk. Two
types of pressures were required; &) the radial pressures on the tank
walls, and b) the vertical pressure on the surface of the fluid filling.
In this section, the nomenclature and the arrangement of the pressure
information required for a forced vibration analysis will be described.

For purpose of obtaining vertical pressures on the fluid surface of

the tank, the surface is divided into sixteen sectors by means of eight

diemetral planes spaced 22 1/2 degrees spert. Each sector is denoted

|

as Sk’ k = 1-16 and is located by an angle 6 measured to the midpoiht

of sector k. The intersection of the bisector of Sk and the periphery of ;}

t he shell is celled 1, 1 = 0-15. The angle 6 is measured positive Zg

clockwise from the zero position which i1s the point at which the shock f%

wave first hits the shell. The sector Bk is bounded by the angles Ok and f}

9k+l' jﬁ

Each sector is further divided radially into three subareas skp’ vhere &t

the subscripts p = 1, 2, 3 refer to the outermost, middle and interior ii

subareas of the sector, respectively. Each subarea contains pressure :@
goges from which a mean vertical pressure Pkp is obtained. The pressure

Pkp is considered constant over the subaresa ka. Fig. (VII-2) ;%

%

By

B

B
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and (VII-3) show the divisions of the fluid surface and the nomenclature
used in the following sections of the report.

For purposes of obtaining radial pressures on the walls of the tank,
goges were placed to measure the average pressure along & generator
denoted by 1 at the various heights shown in Fig. (VII-l). The outside
wall pressure are thus obtained for a sector sk in terms of the four
pressures P11°Pih' For the radial pressure on the inner walls of the
shell, the pressure P16 15 usged for a 9/10 full tank and the pressures
Pis and P16 are used for a half full tank. In each subarea shown in
Fig. (VII-1), the pressure Py b= 1-6, is consiuered constant over the
area.

Once the weapon yield and the peak embient overpressure are selected,

the external pressures acting on the tank can be obtained, and the

forced vibration analysis of the following sections can be made.
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b) n# O Five Constant Approximation - Partisl Filling 0 € ¥y < 1. (8ee Fig. VII-5)

Substituting the expression Eq. (V-15) to (V-17) for the mode shapes
into Eq. (VII-4)-(VII-6) for the response, the displacement u, v, w of a

point on the shell becomes:

= i} X 2
u(z, 6, t) = }: . -ﬁ—q -:-+ _w_n_ (5-2- - LL% )] cosnf qn(t) (ViI-7)
n n a La
n=1
Yo o2
v(z, 8, t) = Z C, 7 7 oinnf q_n(t) (vi1-8)
n=1 n

> Y
w(z, 8, £) = W (w)q (t) + Z C, l},—’l b (B ):I cosné g (t). (VII-9)
n=1 n

Each mode is normalized to the total mass of the empty tank, ﬁx' 2nalm,

and the normalization coefficients C , are given by Eq. (v-19).

The generalized coordinates qn(t) setisfy Lagrange's equations

% %

G+ a)iqnn T - T (VII-10)

vhere W the frequency of vibrations of the tank in the nt'h mods 18
computed from the lowest root of the frequency determinant Eq. (v-13),
(:or Eq. (V-35) if bending effects are small suck that the shell can be

considered to act as a membranejand Qn(t) is the generalized force in the

nth mode.

The generalized force, Qn(t) , may be written as the sum of two terms:

Q(t) = Q,(8) + @ ,(t) (ViI-11)

where in(t) is the generalized force produced by the radial blast

£ e i S
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pressure on the tank walls and an(t) 18 the generalized force produced

by the vertical blast pressures acting on the surface of the tank filling.

The force QnJ(t) is given by

an L
a,(t) = f f P(6, 2, t) v (6, z) adbdz . (VII-12)
o o
Substituting
. r; Yn L
wn(z, 6) = C, Lg + (W; - 5 ) cosnf (VII-13)

into Eq. (VII-12), th(t) mey be written in the form

an

L
Y
in(t) = f {f P(9, z, t) Cn EE + (-w-q--é-g) dz}cosn& add

o 0

Referring to Section (VII-a) in which the pressure measurements made on
the Armour Shock Tube model are described in detail, it is evident that
the spatiel integration with respect to z can be performed at each of'the
sixteen vertical generators "i" on the shell, 1 =0, 1, 2, , . . 16 a8
shown in Figure (VII-1).

Denoting the integral for each 1 as fni’

] |z Yn L
fni = f Pi(z, t) Cn ‘ z * (?T - -é-a) dz (VII-15)
5 — n

and letting Pih

(h=1, 2, 3, 4 5, 6) in the segment 8 containing the point i, the func-

be the pressure at the various heights h of the tank

tion fni is easily computed in terms of the Pih' For example, for the

case of a 9/10 full tank, ¥ = 0.9, fni(a) becomes

2
£, =Cgot [:- +105P,; - JOLSP,, + .OT5P 4 + .Ok5(P,, - Pi6E]

(VII-14)

Y
+Ca .3 Wﬁ Pyy + Pyp + Pyg + 0.333 (By, - PiGi] (VII-16)

" i




Equation (VII-14) may be written in the form:
2n

in(t) = J; fn(e, t) cosn6 ad@ (VII-17)

vhere fn(e, t) is & continuous function of the angle 8. The function

fn(e, t) is expressed as a Fourier Cosine Beries,

8
z (o, t) = am(t) + Z anJ(t) cosjo (v1i1-128)
=1
where the coefficients 8o and & nJ are determined so that rn(e, t) = tni

vhen 6 = 8, (1 =1, 2, «+.16,) This requirement restricts the series to

nine terms and the coefficients a (3) are

n}
1
s, 1% ) () (VII-19)
i=0
15
By ”I]'J; Z £4 (—%)'cos, J—’% (VII-20)
i=0 '
J = l’ 2, 3,0;0.&7

1
ag = 'l% i fni(-’%) cosni (viI-21)
1=0

(2) For the case of a 5/10 full tank, the formula for rni becomes

—

2 .
fa1 = Cyal" |- 4105P,) - LOL5P,, + .OTSP, 4 +.045(Py) pié)_.oepia

Y —
+C 8 .3 -‘-,-:- [}11 + Pyp + Py + 0.333(Py - Pyg) - 1.333P, ¢

(3) The hermonic analysis in which a Fourier Series is passed through

the sixteen points 1 and where the coefficients a

are determined is
nj

given in the Appendix to Bection VII,

.
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: ;=
- Substituting Eq. (VIII«lB) into Eq. (VII-17),
s in(t)n f [no Z a (t)cos,j" cosnf 8adé (vir-22)
|
. J=1
G and using the orthogenality relation 5
on o nyy
f cos)f cosnd a6 =) 3 (viI-23)
(o}

the generalized force in(t) becomes

qnl(t) = na ann(t) . n=1, 2, ...8 (viz-ah)

The load information given in the Armour report is sufficient to give
generalized forces in the nine modes, n = 0 to n = 8, In general there-
_ fore, a nine mode elastic analysis may be made for the determination of
v N the response of the shell; in practice, with loads of moderately long

duration being considered, the series can usually be stopped after the
s fourth to sixth mode.

. The generalized force an(t) due to the vertical pressure acting on 1
t the fluid surface at z = YL 15 given by (4)

3

L 2n a

e b

( o) == [ [ Bz, 8, 017, (r,0)rares (vi1-25)

%\ o o

where}n(r,G) 18 the space dependent part of}n(r, 8, t) which is the

3 displacement of the fluld surface &t z = 7L. From Eq. (IV-110)-(IV-112):

{

N\ 1‘.' = -= ——- -

R 3n(r, 6) Z }ni(r,e) Z Bni ) cosnf (ViI-26)

S . 1‘1 1‘31

A .-_

'% . (4) The minus sign is due to the fact that the pressure P(r,6, t) is

a

: considered positive when acting downward, while positive displacements ¥
8 :
k ;/n(r, 6) are upwards. j
- :
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where
7L
ni
ni 2 n 2 2o, 7L @ L) o .7
(o - 0 )Jn("'ni) T tam(-ES) st
17L
+ tanh(-k )) (VII-27)

Bubstituting Eq. (VII-26) into Eq. (VII-25), Qﬂz(t) becomes

2n =8

Q,(t) = - f f P(r, 6, t) € Lﬁ[ iﬁm%‘ ni
i=1

r
i] cosé rdrdé (VII-28)
o ‘o

Referring egain to Fig. (VII-2) and (VII-3) of Bection {VII-a), the

fluid surfece is divided into circuler sectors denoted by k, k = 1, 2, 3,...16.
Moreover, each sector k is further subdivided into the subareas 8, , p = 1,
2, 3, corresponding to the location of the roof pressure measuring gages. x-J

In each subarea
skp k = 1, 2, ¢ ¢ 16 (VII"29) .";
p=1,2,3 ”J
the pressure is considered constant and the {ntegration of Eq. (VII-28)

can be performed analytically in each subarea. The expression for the

generalized force Qna(t) becomes therefore

o) = ) fj I f o [} s e

ka1 pol (VIZ-30) =

The contribution to Qna(t) from the vertical pressures acting on the
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subarea B, in Eq. (VI1-30) can be written in the form

kp
e r o
k+1 a T
Qnekp = "Pf;p C, -% f coenGdOL[z[Z BniJn( :1 Yrdr  (VII-31)
ek lli=1

where the limits on the integrals are determined by the particular subarea
S}'p° Interchanging the integration with respect to r eand the summation

over i, and defining the quantities

2 ot
Lip [ 7 (-2 yrar (VII-32)
' %
gin n@, .~ sin no :
k+1 k
*nk = +n » (VII-33)
i
the generalized force ank‘p becomes: ,
00
7L =
O‘112kp == Pkpcn a ¥k Z BniInip . (VII-34)
i=1

Analytical expressions for the integrals I nip L;q. (VII-32:I are given in
Teble (VII-1) for n = O(1)6.

The generalized force an(t) 18 given by

16 3
Qo(t) = Z z Q, (t) (VII-35)
kel pal P

which, upon substitution of Eq. (VII-34) becomes:

oo

16
Qn2(t) zz i 'Pkp an-é ¥nk Z Enilnip * (V11-36)

k=1 p=1 1=1

In practice, & sufficient number of the fluid modes, denoted by the sub-

script "i" must be considered, commensurate with the required accuracy.
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For the type of study considered, the first three terms of the series of
fluid modes suffice and the upper 1imit in the summation over i in
Eq. (VII-36) becomes three.

The generalized force Qn(t) can be evaluated from Eq. (VII-1l1) and
the g.neralized coordinates qn(t) can be computed by a numerical integra-
tion of Eq. (VII-10). A suitable numerical integration technigue, due to

(5)

Noumerov, evaluetes q, by a forward step integration in time. Writing

Eq. (VII-10) and the initial conditions for & system starting from rest,

o 2 9u(t) +0,(%)

QG + O, = = = F_(t) (VII-37)

My

qn(O) = an(O) =0

Let "k" be the interval of the time steps, the recurrence formuls for

qn(t+k) becomes

2

qn(t+k) = =5 [Fn(t-k) + lOFn(t) + Fn(t+k):|
12 + k W

.

c gt a2 ],

ek - 106%f
[12+k2w2 ] ,(8) - g (t-k) (V11-36)

4 Fes

Equation (VII-38) allows the determination of the generalized coordin-

- .

ate qn(t+k) in terms of known values at two previous time steps. The

integration 1s started, using the formulas

q_n(O) = 0

2 TLY e T
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(4

(5) Numerical Methods in Engineering by M. G. Salvadori and M. L. Baron,

o Ny,
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Prentice Hall, Second Printing, 1955, Pg. 1i8 ff
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Once the generelized coordinates qn(t) have been evaluated, the
response of the shell is obtained from Eq. (viz- 7 ) (VII- 9 ). Using
Eq. (I-30)-(I-32), the strains in the shell ere given by the expressions(6)

L + ( Vn Z Yn B
25 il l)E -7 | cosn® qn(t) (ViI-ko)
£ n n

o«

ae i} + }Z C
06 12=0 n

B€gg ~
n=1
° —
U
ae = C = 4 2z 3 E)fé
22 n W e~ half cosné qn(t) (VII-41)
n=1 n n —
(e ]
v C \) U X 2
- 4l nwn 2z 1 0.z 3Lz wq (4)

8€,p = z 5 l:w W - 3 5 ) pin g (t) (VII-h2)

] n n n a Y}

Using Eq. (VII-4O)-(VII-42), the membrane shell stresses can be com-

puted'from the relations:

E

Jgg = mé—)' [fleee"'\)aezzj (VII-43)

9, = ;Hf}?-;— [aezz*'\)aeg (VII-4k) 3

. o

(6) The strain €gg 1D the mode n = 0 1s given by Eq. (VII~- 73 ) in Part (c)

of this section.
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For the cane of steel shells with concrete shielding, bending stresses
nny no longer be smell enourh to be ignored. Referring to Fig. (VII-4),

the strains €., and €gg Ore ;siven by the relsotions

2

o dw
€5 * (r-8) =5 (VII-U6)
oz
IDY- N SN \
€96 = @ P 6 /TR T (VII-47)

Substituting Eq. (VII-T)-(VII-9) into Bq. (VII-W6)-(VII-47), expressions
for the struins in terms of the mode shupes and generslized coordinates
can be obtained. The shell stress Ogg Can then be evaluated from

Eq. (VII-43),

..............
-----------------------
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¢) n=0 Portiol Filling 0 <y <1 (Sce Figure VII-5)

The mojor part of the response due to n = O terms is due to the mode
with the lowest frequency, § = 1; similar to the situation for n # O.
Thercfore only the one mode of frequency @, is used. The radisl displace-
ment in this mode is

= qo(t) (V1I-48)
while u(z, 8, t) = v(z, 6, t) = O. The frequency and the virtual mass of
the fluid in the partially filled tenk are given by Eq. (V-U48), (V-49),

and(1V-89), respectively:

L. b L (VII-49)
o 2 2 m
l-y )mia. 14 YO
m
i
© L
2 2 2tanh(a,_, L2)
m, = epa = pa 11;+ -g- rL . Z --—--3-93—5‘-- (VII-50)
& i=1 (u‘oi) Zé
The generalized coordinate qo(t) must satisfy Legrenge's equation:
Q
o 2 0
Gt 0% (Vi1-51)

vhere ﬁo’ the generslized mas s of the partially full tank in the mode

= 0, i8 given by

L 2x
= Tvo
adbdz + mv 8d6dz = 2salm, |1 + y—
0 b m
i
(V1I-52)
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The generalized force, Qo(t), mey be written as the sum of two terms:
Q(t) = q, (t) +q,(t) (VII-53)

vwhere Qol(t) is the generalized force produced by the radial blast pres-
gure on the tank walls and Qoz(t) is the generalized force produced by
the verticel blast pressures acting on the surface of the tank filling.

The force Qol(t) is given by
2n L

Qol(t) = \l‘\l‘ P9, z, t) adodz (V1I-54)

Referring to Bection (VII-a) and proceeding a&s in the case for n ¥ @, the
integration of Eq. (VII-54) with respect to z can be performed at each

of the sixteea vertical generators on the shell, i =0, 1, 2, . . . 16

as shown in Figure (VII-1).

Denoting the integral for each i as foi’
L

£q = fo Pi(z, t)dz

and letting Pih

(h =1, 2, 3,4,5,6) in the segment 8 conteining the point i, the function

be the pressure at the various heights h of the tank

fo is easily computed in terms of the Pi For example, for the case of

1
a 9/10 full tank, 7 = 0.9, fo§63ec0me9

h.

£,4 = +308 [}El +P 4 P13 + ‘333(Pih - Piég] (VII-56)

(6) For.the case of a 5/10 full tank, the formula for f , becomes

£, = 3ok Eil + Py + Py + 2333(Ryy, - Pyg) - 1.3331’1;]




!:

Equation (VII-54) way be written in the form
an

HOE /‘ £ (6, t) 2d0 (VII-57)
Yvo

where f0(9, t) is a continuous function of the angle 6 . The function

fO(B, t) can be expressed as a Fourier cosine scries

8
£ (6, ) = u(t) + }Z oy (#)c0010 (VII-58)
J=1
wherc the coefficlents a  and & _, are determined so that £ (6, t) = f
00 oJ 0 ol

when 6 = 6, (1 =1, 2, +.0.16). It will be shown however, that only the
first coefficient aoo(t) need be computed in order to determine le(t)o
Subrlituting Eq. (VII-58) into Eq. (VII-57) and integrating, it is seen that
only the coefficient 8, @ppears and has to be computed. The generalized

force Qol(t) is

Q1 (t) = 2 a (%) "+ (VII-59)

where the coefficlent a is cbtained for n = 0 from Eq. (VII-19).

The generalized force Qoe(t) due to the vertical pressure acting on

the fluid surface at z = yL is given by

2n &

%4w=-\[l¥u,mth%unuw (VII-60)

whereé?o(r) is the space dependent part of(}b(r, t), which is the displace-

ment of the fluid surface at z = L . From Eq. (IV-91)-(IV-93):

a.r
ol

F0 =8 )2 E L pa b (e
i=1 i=1

il




where
2tanh(o - 12 :-' 3
B, = AR (viI-62) Y
ol gy Jology
N
Substituting Eq. (VII-61) into Eq. (VII-60), Qoa(t) becomes 3

a2n a

Q,(t) = - [ [ P(z, 6, t) [27L z By, (G°£E, rdrd6 .(VII-63)

NI |
o

Referring again to Fig. (VII-2) and (VII-3), the fluid surface is

divided into the subareas 8, as in the case n ¥ O, In each subares, 2 3

kp
the pressure is considered constant and the integration of Eq. (VII-63)

e

i e

can be performed analytically in each subarea. The expression for Qoa(t)

& ,r 2
ol 0 :
o\ & :] rdrd! 21%

(vir-6h)

o
”
e vt

becomes therefore

wo- LTI (20 ]

k=1 pel

The contribution to ng(t) from the vertical prassures acting on the

subarea Skp in Eq. (VII-64) can be written in the form

k+1 Ta = a.,r
%, = o [ f [2”' . Z BoiJo(-‘?-,‘;-] rdr  (VII-65)
i

where the limits of the integration are determined by the particular sub- .},
area Skpo Interchanging the integration with respect to r and the iﬁ
summation over i, and defining the quantity ]
Yo " 3

Totp *® [ Iy ( )rdr (VII-66)
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the generalized force Qoe becomes

kp

L ,. 2 2
Qoakp = =Py (8 = 6 [15 (ry - r}) + Z BoiIo:lp:] - (vII-67)
i=1

An analytical expression for I , is given in Table (VII-1i).

ip
The generalized force Qbe(tf is given by
16
Qp(t) = z i Qyn (VI1-68)
k=1 p=i kp

which, upon substitution of Eq. (VII-6T) becomes

16 3 w a
%2(*) “Z Z " POy - &) [Z‘E (x5 - =) + Z BoiIoip] (V11-69) ]
k=l p=1 1=l
As in the case n # 0, a sufficient number of fluid modes must be considered
comnensurate with the required accuracy. For the type of study considered
the first three termé72f the series of fluid modes suffice and the upper
1imit in the summation over 1 in Eq. {VII-69) becomes two.
The generalized force Qo(t) can be evaluated from Eq. (VII-53) and
the generallzed coordineate qo(t) can be computed by a numerical integra-
tion of Eq. (VII-51). Proceeding as in the case where n f 0, and using
the initial conditions for a system starting from rest, the recurrence
formula for qo(t+k) becomes
(t+k) = -———-1-‘3——— [F (t-k) + 10F (t) + F (t+k):[
% 12 + k2a§ o o o
2h - 106%
+ [}———-—5-5—- t] qo(t) - qo(t-k) (VII-70)

12 + k ab

(7) The constant displacement term is considered as the lowest fluid mode.




where

Q,y (t) + Q(t)

F_(t) = — (VI1-71)
2xalm l} + ] o

i m ~4

i :.

and "k" is the interval of the time steps. :
The integration is started, using the formulas »';

u‘.

g, (0) = 0 o

2 P

(k) = k [101?(0% ; F(k)] ' (VII-72) =

[2h + 2% y

o 4

The generalized coordinate qo(t) glves the response of the shell in Lo

the mode n = O. The corresponding hoop strain, €99 is given by =
. 9,(t) 5]

€09 = @ . (VII-T3) 5

a '-:'

and the hoop stress, 996 becones _'
E S S

o = € ' ViI-T7 ]

69 (1- ),2) 69 .
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d) n¢ 0 Three Constant Approximation - Partial Filling

0< y<1l. (Sce Fig. VII-5)

Substituting the expression of Eq. (V-34)-(V-30) for the mode shopes
n into Eq. (VII-4)~(VII-G) for the response, the displacements u, v, w

of a point on the shell becone:

®

- U

u(z, 8, 1) = Z ¢ 2 2 cosnd q(t) (VII-T5)
nal n
;‘. v(z, 6, t) = Z C, w—“. §sinn9 qn(t) (V11-76)
5 ‘ n=1 n
“ w(z, 6, t) = wo(z)qo(t) + Z c, -3- cosnd qn(t) (vII-77)
S n=1

Each mode is again normalized to the total mass of the empty tank, ﬁi .

2nal m, and the normslization coefficlents Cn are given by Eq. (V-37).

The generalized coordinates qn(t) satisfy Legranges equations,
Eq. (VII-10), where u% is computed from the lowest root of the frequency ;

determinant, Eq. (V-33). The components Q, and Q , of the generalized
force Qn(t) sre obtained in the seme manner as shown in 8ection (VII-b). ]

For the present case, the integral fni for each point becomes
L ;

z J

£y = f Pi(z, t) ¢ zdz . (v11-78) ~

)
Using Eq. (VII-78), expressions giving £ 4 in terms of the pressures

P,, are obtained for the cases of 9/10 full and 1/2 full tanks;

ih

2
£, =Cab [.ohspil + J135P;, + .225P 5 + J095(Py) - Pié)] .

SN 10 full (V1II-79)

o T .
[N DR el S A A T T A T ) RN T Y I Nl W
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£ = Cat™ | LOUSPLL + LL30P,, 4 .23,?13 + '095(Pih - P16) - =280P;;]

1/2 full (vI1-80)

Proceeding exactly =5 in Section (VII-b), the generalized force component
in(t) 1s obtalned from Eq. (VII-24).
The generulized force k(ne(t) is given by Eq. (VIT-25) where, using

Eq. (IV-6la)-(1v-62),

m‘l Cn7L = a,nir
,2 n(r, 0) = 2 2, ni(J:', 8) = " Z By Jn( S ) cos n6 (VIi1-81)
i=1 i=1

and B , is given by Eq. (IV-61b). Proceeding as in Section (VII-b), the
generalized force component Qn2(t) is obtained from Eq. (VII-31). The
numerical integration formules, Eq. (VII-37)-(VII-39) can then be used to
evaluate the generalized coordinate qn(t).

Once the coordinates qn(t) have been evaluated, the response of the
shell is obtained from Eq. (VII-7)-(VII-9). Although the three constant

approximetion may be used to obtain an estimate of the response of the shell,

it does not give accurate results for the strains and stresses in the shell.

It must be emphasized that when shell strains and stresses are required,

the five constant approximation must be used. "

8, S i

o
-

.........
.................
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e) n % 0 Lupty sShell -~ Five Constant and Three Constant Approximations

In Section (VII-b) and (VII-d), methods for the determination of the
transient response of partially filled fuel tanks to blast loadings are
developed. The methods presented in these sections are general and can
be applied to the case of empty tanks, provided that the correct normalized
modes and frequencies of empty tanks[ Sec. (I-a) and (I—e)i{ are used in
the enalysis. Morcover, the generalized force component, Qne(t))must be
set equel to zero for the case of an empty tank. With these exceptions,
the procedures of the previous sections can be used in determining the
transient response of empty cyliadrical fuel tanks to blaste.

Specific formulas in terms of the wall pressures P,, cannot be glven

ih
at this time, since the Armour report (See footnote 1, Bection VII)

contains only pressure information for 9/10 full and 1/2 full tanks.

s e AR
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f) n = 0, Empty Shell.

The response of empty shells for the special case n = 0 has been
discussed in Section (I-e) and (VII-a). To obtain the contribution of

the mode n = O, the empty shell 1is considered to act as a series of

(7),

separate rings'’'’; each ring is subjected to the radial pressure Pih

acting over a circumferential strip of shell equal in depth to the depth

of the vertical subarea "ih" ['gee Fig. (VII-ll] o The response of

each ring,

Von = qoh(t) (viI-82)

satisfies Lagranges equations

0 2 Qoh(t)

%b * %n %n T M (v11-83)

where wbh’ the frequency of each ring, is given by

2 E
“n =3 (VII-8Y4)
Py
and'ﬁo 57 the generalized mass, is given by
M, = 2ram, (viI-8s)

The generalized force on each ring is denoted by Qoh(t) and can be
obtained in a manner similar to that of Section (VII-c). Letting Pih(t)
be the radial blast pressure at the various points i on the particular

ring defined by the index h, the generalized force becomes
2n

Qoh(t)- f ph(e, t)ado (vi1-86)

o]
(7) Each ring is identified by an index "h", corresponding to a particular

subarea "ih", [;ee Fig.(VII-lZJ
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where
8
P(6, t) = a_(t) + Z 2y ()coss0 (VII-87)
J=1
The coefficients a ,,
oJ

when 8 = 6, (1=1,2,0 . ..1). Substituting Eq. (VII-UT) into

J = 0-8, are determined so that ph(e, t) = Pih(t)

Eq. (VII-86) end integrating, it is seen that only the ccefficient
aoo(t) sppears end has to be comput d. The generalized force Qoh(t)
is

0n() = 22 8 (1) (VIT-88)

where the coefficient aoo(t) is given by

15
Bl =1 ) Py (v11-89)
1=0

Proceeding as in Section (VII-c), Eq. (VII-83) can be integrated
using Eq. (VII-70) and (VII-72) where
aoo(t)

F (t) = o (VII-%0)

The response woh(t) is assumed to act at the center of each ring and the
corresponding hoop strain and hoop stress for each ring can be eveluated

using Eq. (VII-73)-(VII-TL4) respectively.




)

“

-186-

Appendix to Scction VII - Determination of the Fourier Series Coefficlents a ..

1

The continuous function f (0, t) given by Eq. {(VII-18),

8

fn(G, t) = ano(t) + z an,j(t) cosjf (a-1)

J=1
18 required for the determination of the generalized force component Qal(t).

ARSI )

" ‘l

Rl Y.

The coefficients &_, are chosen so that i’n(G, t) = £ 4 ¥hen 0 = 61

nJ

3 (1 = 1-16). 1In this section, the expressions for the coefficients 23 in
:. terms of the quantities fni will be developed. :
Consider the Fourier Series g
:.. 00 3
4 £ (8) ' 6 2 :
g ,(8) =2 o+ 3,y 08 (A-2) o
J=1 w
vhere the coefficients g nJ are given by the expressions s |
: en -
{ f £ (6) cosje do )
3 0 =
= 9'n‘j - an (a-3) -
f cos~J64eo L
o iy
_‘
: Let the value of the function fn(G) be known at N equally separated ::.:;;

points i, i = 1-16, where each point 1 is located by the angle 91 (L =1,
® 2, 3. . .N). The coefficients 2 of the series, Eq. (A-2), are to be e
._' evaluated so that fn(e) = rr(ei) =f, et each point i. Calling the
N intervel of separation ;
S b
»
;- N = %—E (A-4) N

the coefficient of Eq. (A-3) can be written as a ratio of the summation )
; over i, N o
Z i‘ni(ei)coa‘j@i .
. i=1
(N = - - 5
¥ 83 \_U_‘ (A-5) :
i ), e :
A o) o
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Setting 91 = 2}’% ,1=0,1, 2, . . .N-1, for convenience, Eq. (A-~5)
becomes; N-1
' 2ni oni
Z o (FFeosd -
i=0
ag * W1 ' (A-6)
cosej exd
N
i=0
Using the summation formula
N-1
( -
z coslal = g_+ sino(2N-1) + sino (A=7)
) kping,

and setting a = ?—l%t J, the following results are obtained:

N-1
N 2 2n N
30, 3¢5 Sﬁ cos” — Ji =3 (A-8)
o l__‘ n
1=0
N-1
J=0 Z coseoi =N (A-9)
1=0
N-1
§ = g cos’nl = N (A-10)
i=0
Substituting Eq. (A-8)-(A-10) into Eq. (A-6), the coefficients L become :
-1
2 2ni 2nl
- Z £ R co8d - (A-11)

1=0
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-y

For the particular case where N = 16, Egs. (VII-19)-(VII-21) ere
obtained. It should ve noted that vhen a harmonic analysis passing &
Fourier Series through N points is made, the series terminates after

the term (g +1).
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n=20
T
2 dnir
a
1
n=1
r
frJ
o
D= 2
r2 a,
[
1
n= 3
3 o
ni
rd
J7 oyt
0
n= l&
by r
? a’nir a nir 211‘2 - 21&&2 u'ni y
f rJh(a)d’r"_ﬁ_ BJo(a.) ( o er )Jl(a.l
T “ng ¥y
r B 2 2 2 5
@, o @ T - 2ha @ sF k
frJh( )dr°2 8Jo(a.) ( o _,ar )Jl(a)"'h
(¢} a'ni L i
ns=5
r a ,r 2 -6ho.J(nir) a_,r ¢, r @ T
rJ(ni)dr-a _ (i)-niJ(ni)
5' a 2 @ .r 1V a a Yo'\ =&
o] ni ni
y )
r
10 ) g (=dny
L, 2n+l @ J
n=0
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b
@ a? 1075208 2112085  480oa  “ni® @
r J8( = ) dr = - | |- T + 33 " +— Jl( = ) +
[) i ahir ahir ahir

I 2 o ,r
53760a 38L0a ni
+ e el R Jo( a )+ 8
o, o T
ni ni

il

o il

VN

Sl

(*) For n = 2dd integers, the integral is obtained as an infinite series

in J2n+l

accuracy mus e eén. Moreover e lnvegr. etwveen 8 r, ana r 8
y must be taken. M , the integral bet lnmits r, and 1, 1

(ahi r/a) and a number of terms commensurate with the required

computed from:
T2
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VIII CONCLUSION (Comment on the Purposes and Results of the Mode Analysis)

The logical first step in the analytical study of a new problem concern-
ing the ability of a structure to withstend static or dynemic loads, is
the formulation of a theory glving the elastic (usually small deflection)
response of the structure. Such a theory willein general-not be valid up
to the stage where the structure collapses or loses its usefulness otherwise;
instead, the purpose of this simplest theory is to find out which of the
many possible refinements, large deflections, plastic behavior, etc., ought
to be included in an anslysis to meke it valid up to cepacity loads.

An obvious exsmple for the situation ocutlined 1s the capacity of beams
to carry static loads: the conventional (elastic) theory ceases to be
valid when the yield point is reached somewhere in the cross section. To
obtain a theory valid up to capacity loads plastic effects must be included.
It 18, however, not always a plastic theory which is required, as may be
seen from the example of & slender column. In this well-known case,elastic
second order effects must be included to be able to describe the buckling
behavior.

Similarly in the present study of the ability of fuel tanks to resist
air blast, the mode analysis cannot be expected to be valid up to the end
of the usefulness of the structure, because the a-priori unknown lethal
damage, possibly tearing of the plates, buckling, sloshing of fluid, nec=-
essarily will bé preceded by a phase requiring one or more refinements
beyond an elastic small deflection theory. The mode analysis presented
can however be used--and has been formulated with considerable effort

expressly for the purpose of determining which physical effects will




occur requiring a new theory. The sole objective of the mode analysis is
therefore to find the end of its own usefulness, occué&hg at a certain
time after a blast wave hits the tank, and disclosing which additional
physical effects must be included in a sucsequent stage.

The stresses in a typlcal 100 ft. diameter tank (steel, 9/10 full)
were determined by means of this mode analysis, and are presented as
semple computation.(l) In addition, less detailed determinations of
stresses were made on full, half full and empty full-scale protected and
unprotected tanks, and on scaled model tanks ranging from 16"-72" in
diameter. These computations indicate in all cases that the mode analy-

(2)

sis ceases to be valid after a quite short time, the reason being that
the tank wall on the side facing the wave 1lifts from the support.

The mode analysis assumes that the shell 1s cantilevered from the
base and that the shell is prevented from vertical (and horizontal)
motion, an assumption which is initially correct. However, the support
of the shell is such that large downward reactions can be carried, while
uplift of the shell is prevented only by the dead weight of the shell
(and possibly by nominal bolts of small total strength). E.g., in a
steel shell of 100 ft. diameter and 4O ft. height, the vertical compressive
stress is only 340 1bs./in2, such that any vertical tensile stress

g, > 3ko lba./ina, induced by the blast will cause uplift. At loed in-

tensities of interest, vertical tensile stresses of such small magnitude

develop very quickly and the validity of the mode analysis ends due to

(1) See Part (III) of the Final Report

(2) short in comparison to the decay constant of the shockwave.

)
[
s .
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uplift for a 100 ft. diometer tank after only o few milliseconds,long before

[,".;
e

plasticity or lorpe deflections effects can develop.

The theorctical conclusions that uplift will develop has since been

-

verified by teots on mercury filled 16 inch diemeter models in the shock

L.

tube, and by tests on water {i1lled, full, half-full and empty models of

- -
(2

10 ft. diemcter. The tests hove demonstrated (See Fig. VIII-1) clearly,

0

that large uplift, exceeding 25 per ceni of the helght of the model does
e occur on models prior to lethal demsge. This fact leads to the conjecture
that sppreciable uplift may also occur on full scale tenks.
From the instant of time when the mode eanalyeis becomes invalid, a
- new type analysis is therefore required; this anslysls 1s complicated
by the fact that e part of the shell,(Flg. VIII-2),over some unknown and
possibly varying angle 2o will not be vertically supported, while the
b remainder of the shell, wherever the reactions are dowawsrd is still
supported by the base. Analytical treatments for this situstion are

developed in Part II of this Report. These treatments are also mede in

- stages, because the first theory allowing for uplift only requires addi-
5 I tional refinements in order to epply up to lethal damage.
5 - In view of this fact that tentative computations and model tests
i = indicate that the mode analysis always ceases to be valld long before
3 lethal damage develops, it appears that the mode analysis need not be re-
.
3 peated at all in a study of effects of various blast waves on tanks of 3
il
a different sizes, (3), but that such a study requires only the application
E . of the methods developed in Part IX. It is noted that the work on the
R 3
7 (3) Unless some unconventional type tank is studied.
'L-:: 9
2 e S
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mode analysis recorded in Port I not only was required to recognize that

tanks will 1ift prior to failure, but that a large part of the derivations

are used sgsin in the theories developed in Part II. N
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Appendix p:Buckling of Empty Cylindrical Tanks

The problem of the static buckling of an empty cylindrical fuel tank
subjected to e unform radial pressure producing a uniform compressive
hoop stress end strain4s considered in this Appendix.(l) The fuel

tank is of height L and radius a, and is free at the top eand simply

supported at the base., The uniform buckling pressure, Pys is obtained
by use of the Rayleigh-Ritz method which leads to a direct solution of
the extremum problem arising from the theorem of Stationary Potential

Energ'.(a) This theorem is given by the following relation:
Us 7+ W= stationary . (B-1)

vhere the stationary value of the total potentiel energy U mu‘st be &
minimum for atable equilibrium. The quantity v represents the strain
energy of the structure and W is the potential energy of the external
loads,

The general expression f?r the strain energy V in terms of the chell

displacements, u(z, 0), v(z, 6) and w(z, 6), is given by Eq. (I-10)-(I-12)

of the main paper which are repeated here for convenience:

Vav, +V

1* Vo (8-2)

(1) This problem was considered because of the possibility that tanks

might buckle dus to the hoop atress produced by the blast loads. It was
¢found subsequently, that in the case of interest, uplift of the tanke
occurs prior to any possibility of buckling so that the analysis reported
o here was not utilized.

(2) "Buckling Strength of Metal Btructures" by Friedrich Bleich, Edited
by Hesns @I, Bleich, McGraw-Hill Book Coupany, 1952, New York, Pg 7O ff.
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1
vhere the first term Vl is the wowbrone stiain energy:
en L . o
B )
vy = 5 a? u + (v - v) + 2uVu, (v ~ ) .
2(]_"\)L) [ .

* (-lgz)(ue + avz)a:] 4z (B-3) o

and the sccond term \I2 reprcoents the strein energy of bending) and coupling

terms between the membrene and bending strains: NS
on L ) =
v, = 5 f f l w’“ + (g, + w) + (l")(aw .0 " u9)2
2l(1~ v‘ 2z
v E
3 l" ) 2 / r 2 2 . .-,3
+ =5 a” {v, + ‘\ze) + 28 sz(“ee + ve) )
+ 2a3 uw i dzdae . (B-4) :
z 22

Th' expression for W, the potential energy of the external uniform

pressure p,, 18 given by(a) ‘\2
¥ - 2“ <3

ff I;tv - w - - anuz_~ a6 dz - -«g—— j WO] ao . o

° z = L

(B-5) '

Using the Rayleigh~Ritz method, an eppropriate set of coordinate __,

functions with arbitrary cocfficlents; which satisfy the boundary condi-

tlons on the deflections u, v, and v of the shell is assumed. Substitut-

ing these expressions into Eq. (B-1)-(B-5), the totol potential energy U

is obtained as a function of the arbitrary coefficients. For atatic A
equilibrium, the condition that U be a minimum leads to en ordinsry meximum-

minimum problem cn the arbltirary constants and hence to & set of homogeneous 2

At e b+

(3) "Dynomic Response of Cylindrical Tonks" by F. L. DiMagglo, Armed

Forces Speciai Wespons Project, Contract DA-29.0Wk-XZ-54, AFSWP No. 1075, o
May 1956, Pg. 21, Eq. (6).
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. linear algebraic eguations on these constonts. For non zero solutions,

15 the determinant of the sct of homogeneous eguations must be set equal

v Y
.

to zero, thus lcading to an equation on the critical pressure Py

Be'

-~ corregponding to u buckling mode defined by the number "n" of

'

circumferential waves in the shell displacements. Buckling determinsnts
will be developed for both the three constant and the five constent

approximations considered in Sections (I)}-(VIII).
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() Three Constunt Anproximation .
2
Lot the displacements of the shell (Fig. I-1) be given by the -
coordinate functions QﬁJ
u(z, 6) = U g cos nb {B-6) -
v(z, 6) = V é sin nf (B-7) ;;
w(z, 6) = W % cos né (8-8) o
where U, V and W are undetermined constant coefficients. Substituting :.
X into Eq. (B-2)-(B-5), the total strain energy V is given by -
Ehx ’ 2 32 1-V . -
Ve gl P s (v -2 d & Yu@v - Wi+ EYEE 4 v® - g UV -
" 2 3 2 3 "
> 2(1-¥%) =
2,2 T
W,
0 W (-——l—l‘g 3+ 2000 | T
+ Ehn §§ o
—s o
24(1-Y°) a Vo263 J o
l-Y\n 3‘1- 2 -
1 + (-é—)-—s-‘- 02 + 5 [ V2
3 ) N
- l-vy 2,2 o
e
; and the potential energy of the external pressure W becomes:
X p_ L 2 2,2
3 e g |GE)E P Bk Py g (3-10) 3
A Lo
4 ' -
- The condition of minimum total potential energy =
g _ :
" 3 V+ ﬂ = 0 (B-11) o
. i

where Ci successively takes the values U, V, W leads to the following cet

of three homogeneous linear equations in the unknowns U, V and W: Tf




Vv

2,2
U [% + (1-0y—-- (1+k

- \, =i - \) -—
n§(3£"1)+ MBn§J+ W {-¢g -neg(l%l)k . ”u%J’ 0

(B-12)
2,2
[: (3Y Ly ng + v [:h + (1-Y) + 3k(l-9“] + wl?;”” - 3(1-9)n;_l =0
(B-13)

[Vg.g( )k - %]+v

2
?1318, - 3(1—V}nk:,+

{_Q;’LLL b(1-V)n | + 2(1-n )gauﬂvl

i“_“'r“—w

+ -2
(B-1k)
where z
pnBa(l'va) 3
Mo (B-15) ;
Eh i
h2
end k = ——, . Non zero solutions of Eq. (B~12)-(B~14) require that the
12a

determinant of the system venishes, thus leading to the determenantal buckl-
ing equation shown on Page 165.
The lovest root M , of Eq. (B-16) defines the critical buckling pres-
E:

sure p in the mode denoted by n. The buckling stress 0.p can then

be computed from the relation

a
f,nB.?pnB'E . (B‘17)
It should be noted that for very thin shells in which % is very small,

the constant k can be set equsl to zero in Eq. (B-16) as in the vibration

problem of Section (I).
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Figure (B-1) shows a curve of the buckling load number MnB plotted
against the mode number n for an unprotected steel tank (no concrete
shielding). For the lower modes L <n <7, the shell acts as a membrane
while for the higher modes n > 18, the bending strains predominate and
control the critical buckling loads.

As an example, the following table shows the staetic boop stresses
for n = 2, 6, 16 at which a steel tank of 100 ft. diameter, %0 ft. height
and 1/2 inch wall thickness would buckle. The smallest hoop stress is

required for n = 16.

n 2 6 16

anB(psi) 210,000 17,840 720

Figure (B-2) shows the similar curve for a protected steel tank
(18 inch concrete protection). For protected steel tanks, the buckling

pressures p_, are of course very much higher; in addition the minimum
nB

occurs for a much smaller value of n.




(b) Five Constent Approximation.

Let the displacements of the shell be given by the more general

coordinate functions

) 2

u(z,0) = IU % + X (35 - 3Lz) ] cos né (B-18)
- 8

v(z, 6) = V % sin né (B-19)

w(z, 0) = |Y + W (é - §§) ] cos né (B~20)
. ..

vwhere U, V, W, X and Y are undetermined constant coefficlents.

Proceeding exactly as in Part (a) of this Appendix, the determenantal
buckling equation shown on Page 168 1is obtained.

The lowest root MnB of Eq. (B-21) defines the critical buckling
pressure p . in the mode n.

In sample computations, it was found that the buckling loads are well
approximated by the three-constant epproximations and that it is unnecessary
to use the fifth order determinant, Eq. (B-21). This can be seen from

Figo (B'e)o
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(¢) Dynumic Buckling

The term "dynomic buckling" ls only another way of saying that
the structure will show a transienl response. Thls transient response
can be found sgwin from the appropriate eguations of motion using the
modes of free vibration as generalized coordinates. In the presence of
a hoop stress o which is a substancial percentege of the buckling stress

¢ .., or which exceeds O.p? Eq. (V:I-10) the equation of motion for the

nB

generalized coordinate 4, becomes

an + aﬁ (1~ Ei; ) Q, = 0 (B-22)

&
Ei

If o/onB is small, such that it can be neglected, the original equation

of motion, Eq. (VII-10) is again obtained, It is noted that Eq. (B-22)

is valid for voth positive or negative values of 1 = Eg' . 3

nB |
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